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Introduction

1.1 Basic Concepts

Theorem 1.1 (The Delta Method). Let Yn be a sequence of random vectors

in Rd such that for some µ ∈ Rd and a random vector Z, we have n
1
2 (Yn −

µ)
d→ Z. If g : Rd → R is differentiable at µ, then n

1
2 (g(Yn)− g(µ)) d→

∇ g(µ)TZ.

Proof. For d = 1. Let g′(µ) = ∇ g(µ), and let h : R→ R, by

h(y) =


g(y)−g(µ)

y−µ y 6= µ

g′(µ) y = µ
(1.1)

Then by the continuous mapping theorem and Slutsky’s theorem,

n
1
2 (g(Yn)− g(µ)) = h(Yn)n

1
2 (Yn − µ)

d→ g′(µ)Z.

1.1.1 Parametric vs Nonparametric models

A statistical model postulates a family of possible data generating

mechanisms. Examples include:

(i) Let X1, . . . , Xn ∼ T(m, θ) iid, with m known and θ ∈ (0, ∞) = Θ

an unknown parameter.

(ii) Let Yi = α + βxi + εi, i = 1, . . . , n where xi are known and εi are

iid with E(ei) = 0, V(εi) = σ2. Here, the unknown parameter is

θ =


α

β

σ2

 ∈ R×R× (0, ∞) = Θ.
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If the parameter space Θ is finite dimensional, we speak of a para-

metric model. In such situations, typically we can estimate θ using

the MLE θ̂n, and have θ̂n − θ = Op(n−
1
2 ).1 1 Definition of Op - TODO

This assumes the model contains the true data generating process,

if not, inference can be misleading.

Examples of nonparametric models include:

(i) Let X1, . . . , Xn, i = 1, . . . , n be iid with arbitrary distribution

function F.

(ii) Let X1, . . . , Xn, i = 1, . . . , n be iid with twice continuously differ-

entiable density f .

(iii) Let Yi = m(xi) + v(xi)
1
2 , i = 1, . . . , n where m is twice continuously

differentiable and s ε1, . . . , εn are iid with E(εi) = 0, V(εi) = 1.

Such infinite-dimensional models are much less vulnerable to

model misspecification, typically, however we pay a price for our

generality in terms of a slower convergence rate - e.g. Op(n−
2
3 ) in

problems (ii) and (iii) above.

1.1.2 Estimating an arbitrary distribution function

Let X1, . . . , Xn be iid on a probability space (Ω,F , P) with distribu-

tion function F. The empirical distribution function F̂n is defined by

F̂n(x) =
1
n

n

∑
i=1

I(Xi ≤ x) . (1.2)

Theorem 1.2 (Glivenko-Cantelli (1933) - The Fundamental Theorem

of Statistics).

sup
x∈R

∣∣F̂n(x)− F(x)
∣∣ as→ 0. (1.3)

Proof. Given ε > 0, choose a partition −∞ = x0 < x1 < · · · < sk = ∞

such that, for each i = 1, . . . , k, we have F(xi−)− F(xi−1) ≤ ε, where

F(x−) = limy↑x F(y).

Note that any point at which F jumps by more than ε must be

in the partition. By the strong law of large numbers, there exists an

event Ωε with P(Ωε) = 1 such that for all ω ∈ Ωε, there exists
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n0 = n0(ω, ε) with

∣∣F̂n(xi)− F(xi)
∣∣ ≤ ε, i = 1, . . . , k− 1, n ≥ n0, (1.4)∣∣F̂n(xi−)− F(xi−)
∣∣ ≤ ε, 1 = i, . . . , k− 1, n ≥ n0. (1.5)

Now, fix x ∈ R, and find i ∈ {1, . . . , k} with x ∈ [xi−1, . . . , xi). Then

for ω ∈ Ωε and n ≥ n0,

F̂n(x)− F(x) ≤ F̂n(xi−)− F(xi−1) = F̂n(xi−)− F(xi−) + F(xi−)− F(xi−1) ≤ ε + ε = 2ε

(1.6)

Similarly, we have

F(x)− F̂n(x) ≤ F(xi−)− F̂n(xi−1) = F(xi−)− F(xi−1) + F(xi−1)− F̂n(xi−1) ≤ ε + ε = 2ε

(1.7)

We deduce that

P

(
sup
x∈R

∣∣F̂n(x)− F(x)
∣∣→ 0

)
= P

(
∩∞

m=1 ∪∞
n0=1 ∩∞

n=n0
{sup

x∈R

∣∣F̂n(x)− F(x)
∣∣ ≤ 1

m
}
)

(1.8)

= lim
m→∞

P
(

Ω 1
2m

)
= 1 (1.9)

Theorem 1.3 (Dvortesky-Kiefer-Wolfowitz). Let X1, . . . , Xn ∼ F iid.

Then for every ε > 0,

P

(
sup
x∈R

|F̂n(x)− F(x)| ≥ ε

)
≤ 2e−2nε2

. (1.10)

An application is to consider the problem of finding a confidence

band for F at 1− α. Given α ∈ (0, 1), set εn = (− 1
2n log α

2 )
1
2 . Then by

1.3,

(max(F̂n(x)− εn, 0), min(F̂n(x), 1)) (1.11)

is a 1− α confidence interval for F.

In fact, let U1, . . . , Un ∼ U(0, 1) iid, and let Ĝn denote their empir-
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ical distribution function. Then

Ĝn(F(x)) =
1
n

n

∑
i=1

I(Ui ≤ F(x)) =
1
n

n

∑
i=1

I
(

F−1(ui) ≤ x
)
=

1
n

n

∑
i=1

I(Xi ≤ x) = F̂n(x)

(1.12)

It follows that

sup
x∈R

|F̂n(x)− F(x)| = sup
x∈R
|Ĝn(F(x))− F(x)| ≤ sup

t∈(0,1)
|Ĝn(t)− t|

(1.13)

with equality if F is continuous. We deduce that, if F is continuous,

the distribution of supx∈R |F̂n(x)− F(x)| does not depend on F.

Other examples include Uniform Laws of Large Numbers (ULLN).

Let X, X1, X2, . . . be iid taking values in a measurable space (X ,A),
and let G denote a class of measurable functions on X . We say that G
satisfies a ULLN if

sup
g∈G
| 1
n

n

∑
i=1

g(Xi)−E(g(X)) | as→ 0. (1.14)

Thus Theorem 1 shows that the class G = {I(· ≤ x) : x ∈ R} satisfies

a ULLN. In general, proving a ULLN amounts to controlling the size

of G, which can be done by using the idea of entropy (c.f. Statistical

Theory).

Further results start with the observation that

n
1
2 (F̂n − F(x)) d→ N(0, F(x)(1− F(x))) (1.15)

by the central limit theory. This result can be strengthened by study-

ing {n 1
2 (F̂n(x)− F(x)), x ∈ R} as a stochastic process.

Proposition 1.4. Let U1, . . . , Un ∼ U(0, 1) iid. Let Y1, . . . , Yn+1 ∼
Exp(1) iid and let Sj = ∑

j
i=1 Yi for j = 1, . . . , n + 1. Then

Uj =
d Sj

Sn+1
∼ Beta(j, n− j + 1). (1.16)

Definition 1.5. For p ∈ (0, 1], the quartile function is defined by

F−1(p) = inf{x ∈ R : F(x) ≥ p} and is left-continuous.

The sample quartile function is F̂−1
n (p) = inf{x ∈ R : F̂n(x) ≥ p}.
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Theorem 1.6. Let U1, U2, . . . , Un ∼ U(0, 1) iid and p ∈ (0, 1). Then

√
n(Udnpe − p) d→ N(0, p(1− p)). (1.17)

Proof. Let Y1, . . . , Yn iid Exp(1), let Vn = Y1 + · · ·+ Ydnpe and Wn =

Ydnpe+1, . . . , Yn+1. Note that Vn, Wn are independent and

Vn

Vn + Wn
=d Udnpe (1.18)

by previous proposition. Then

√
n(

Vn

n
− p) =

√
dnpe√

n
(

Vn − dnpe√
dnpe

) +
dnpe − np√

n
d→ N(0, p) (1.19)

by the CLT and Slutsky’s theorem.

Similarly,
√

n(Wn
n − q) d→ N(0, q), where q = 1− p, then by the

delta method, with g(x, y) = x
x+y ,

√
n(Udnpe − p) =d √n(g(

Vn

n
,

Wn

n
)− g(p, q)) (1.20)

d→ N(0,∇ g(p, q)T

p 0

0 q

∇ g(p, q)) (1.21)

=d n(0, p(1− p)) (1.22)

Theorem 1.7. Let p ∈ (0, 1) and let X1, . . . , XniidF where F is differen-

tiable at F−1(p) with positive derivative f (F−1(p)). Then

√
n(Xdnpe − F−1(p)) d→ N(0,

p(1− p)
f (F−1(p))2 ) (1.23)

Proof. Let U1, . . . , UniidU(0, 1) so that F−1(Udnpe) =
d Xdnpe. Then by

the previous theorem and the delta method with g = F−1,

√
n(Xdnpe − F−1(p)) =d √n(g(Udnpe)− g(p)) (1.24)

d→ N(0,
p(1− p)

f (F−1(p))2 ) (1.25)
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1.2 Density Estimators

Definition 1.8 (Histogram Estimator).

f̃b(x) =
1

nb

n

∑
i=1

I(Xi ∈ [xk, xk+1)) (1.26)

Definition 1.9 (Kernel Density Estimator).

f̂h(x) =
1

nh

n

∑
i=1

K(
x− Xi

h
). (1.27)

where K : R→ R satisfies
∫

R
K(x)dx = 1 is called the kernel, h > 0 is

the bandwidth.

Write Kh(x) = 1
h K( x

h ) so that

f̂h(x) =
1
n

n

∑
i=1

Kh(x− Xi). (1.28)

Definition 1.10 (MSE).

MSE( f̂h(x)) = E
(
( f̂h(x)− f (x))2

)
(1.29)

= E

(
( f̂h(x)−E

(
f̂h(x)

)2
)2
)
+ (E

(
f̂h(x)

)
− f (x))2.

(1.30)

Write ( f ? g)(x) =
∫

R
f (x− y)g(y)dy

Theorem 1.11. For the KDE, we can write

Bias( f̂h(x)) = E(Kh(x− X1))− f (x) (1.31)

=
∫

R
Kh(x− y) f (y)dy− f (x) (1.32)

= (Kh ? f )(x)− f (x) (1.33)

Similarly,

V( f̂h(x)) =
1
n
((K2

h ? f )(x)− (Kh ? f )(x)2) (1.34)

Usually, we prefer to choose h to minimize some expression mea-

suring how well f̂h estimates f as a function. We therefore define the
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Mean Integrated Squared Error (MSIE) as

MSIE( f̂h) = E

(∫ ∞

−∞
{ f̂h(x)− f (x)}2dx

)
(1.35)

=
∫ ∞

−∞
MSE( f̂h(x))dx (1.36)

=
∫ ∞

∞
((Kh ? f )(x)− f (x))2 +

1
h
((K2

n ? f )(x)− (Kh ? f )2(x))dx

(1.37)

which is justified by Fubini’s theorem as the integrand is non-negative.

Although exact, this expression depends on h in a complicated way.

We therefore seek asymptotic approximation to clarify this depen-

dence and facilitate an asymptotically optimal choice of h.

1.3 Asymptotic MSE and MSIE approximation

We need the following conditions:

(i) f is twice differentiable, f ′is bounded, and R( f ) =
∫ ∞
−∞ f ′′(x)2dx <

∞.

(ii) h = hn is a non-random sequence with h → 0 and nh → ∞ as

n→ ∞.

(iii) K is non-negative,
∫ ∞
−∞ K(x)dx = 1,

∫ ∞
−∞ xK(x)dx = 0, µ2(K) =∫ ∞

−∞ x2K(x)dx < ∞, and R(x) < ∞.

Theorem 1.12. Assume that the previous conditions hold. Then, for all

x ∈ R,

MSE( f̂n(x)) =
R(K) f (x)

nh
+

1
4

h4µ2
2(K) f ′′(x)2 + o(

1
nh

+ h4) (1.38)

as n→ ∞.

Proof. We first claim that f is bounded. Otherwise, there would

exists (xn) such that f (xn) ≥ n. Since f is a density, the exists xn,l ∈
[xn − 2

n , xn] such that f (xn,l) ≤ n
2 and there exists xn,m ∈ [xn, xn + 2

n ]

such that f (xn,m) ≤ n
2 . y the mean value theorem, there exists x?n,l ∈

[xn,l , xn] such that f ′(x?n,l) ≥
n2

4 and there exists x?n,m ∈ [xn, xn,m] such

that f ′(x?n,m) ≤ − n2

4 . By the mean value theorem again, we have that
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there exists x??n ∈ [x?n,l , x?n,m] such that f ′′(x??n ) ≤ − n3

8 , contradicting

boundedness of f ′′.

We can therefore define C0 = supx∈R f (x) and C2 = supx∈R | f ′′(x)|.
Now,

E
(

f̂h(x)
)
=
∫ ∞

−∞

1
h

K(
x− y

h
) f (y)dy (1.39)

=
∫ ∞

−∞
K(z) f (x− hz)dz (1.40)

=
∫ ∞

−∞
K(z)( f (x)− hz f ′(x) +

1
2

h2z2 f ′′(x))dz + REM1

(1.41)

= f (x) +
1
2

h2µ2(K) f ′′(x) + REM1. (1.42)

To control the remainder, given ε > 0, choose δ > 0 such that

| f (x− hz)− ( f (x)− hz f ′(x) +
1
2

h2z2 f ′′(x))| ≤ εh2z2 (1.43)

for all |hz| ≤ δ.

Then

|REM1| = |
∫ ∞

−∞
K(z) f (x− hz)dz−

∫ ∞

−∞
K(x)( f (x) +

1
2

h2z2 f ′′(x))dz|

(1.44)

≤ |
∫
|z|> δ

h

K(z) f (x− hz)dz|+
∫
|z|≤ δ

h

K(z)| f (x− hz)− ( f (z) +
1
2

h2z2 f ′′x)|dz

(1.45)

+ |
∫
|z|> δ

h

K(z)( f (x) +
1
2

h2z2 f ′′(x))dz| (1.46)

≤ C0
h2

δ2

∫
|z|> δ

h

z2K(x)dz (1.47)

+ εh2
∫
|z|≤ δ

h

z2K(z)dz + C0
h2

δ2

∫
|z|> δ

h

z2K(z)dz +
1
2

h2C2

∫
|z|> δ

h

z2K(z)dz

(1.48)

≤ εh21 + µ2(K) (1.49)

since
∫ ∞
−∞ zK(z)dx = 0, Markov’s inequality, etc. Thus,

BIAS( f̂h(x)) =
1
2

h2µ2(K) f ′′(x) + o(h4). (1.50)
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For the variance,

V
(

f̂h(x)
)
=

1
nh2

∫ ∞

−∞
K2(

x− y
h

) f (y)dy− 1
n
{E
(

f̂h(x)
)
}2 (1.51)

=
1

nh

∫ ∞

−∞
K2(z) f (x− hz)dz− 1

n
( f (x) + o(1))2 (1.52)

=
1

nh

∫ ∞

−∞
K2(z) f (x)dz + REM2 + O(

1
n
) (1.53)

=
R(K) f (x)

nh
+ REM2 + O(

1
n
) (1.54)

To control REM2, given ε > 0, choose y > 0 such that | f (x− hz)−
f (x)| ≤ ε for |hz| ≤ y. Then

nh|REM2| = |
∫ ∞

−∞
K2(z)( f (x− hz)− f (x))dz| (1.55)

≤ ε
∫
|z|≤ y

h

K2(z) + 2C0

∫
|z|> y

h

K2(z)dz (1.56)

≤ ε(R(K) + 1) (1.57)

for large n.

We deduce that V
(

f̂h(x)
)
= R(K) f (x)

nh + o( 1
nh ) and

MSE( f̂h(x)) =
R(K) f (x)

nh
+

1
4

h4µ2
2(K) f ′′(x)2 + o(

1
nh

+ h2) (1.58)

The hope is that to compute the MSIE, we can just integrate the

MSE over range of the RV. We need to be careful - in general we

cannot integrate asymptotic pointwise estimates - need to understand

dependency on x.

With mild additional conditions and further work (see the example

sheet), it can be shown that

MISE( f̂h) =
R(K)

nh
+

1
4

h4µ2
2(K)R( f ′′) + o(

1
nh

+ h4) (1.59)

We see that asymptotically the integrated variance term decreases

with h while the integrated squared bias term increases with h. This

is the bias-variance tradeoff.

This bias-variance tradeoff summarizes the critical role of the

bandwidth.

Consider now minimizing the asymptotic MISE (AMISE) R(K)
nh +

1
4 h4µ2

2(K)R( f ′′) with respect to h, yielding the asymptotically optimal
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bandwidth

hAMISE = (
R(K)

µ2
2(K)R( f ′′)n

)
1
5 (1.60)

Substituting back, we obtain

AMISE( f̂AMISE) =
5
4

R(K)
4
5 µ2(K)

2
5 R( f ′′)

1
5 n−

4
5 . (1.61)

Notice the slower rate than the typical O(n−1) parametric rate.

Notice that for the “rough” densities, with larger R( f ′′), we should

use a smaller bandwidth, and these densities are harder to estimate.

1.4 Pointwise asymptotic distribution

Theorem 1.13. Assume the previous assumptions (i), (ii), (iii) and that K

is bounded. Then, for all x ∈ R,

n
2
5 ( f̂hAMISE(x)− f (x)) d→ N(

1
2

µ2(K) f ′′(x), R(K) f (x)) (1.62)

Proof. First, observe that from the proof of the previous theorem,

n
2
5 (E

(
f̂hAMISE(x)− f (x)

)
)→ 1

2
µ2K f ′′(x) (1.63)

For the stochastic term, let Yni =
1

h
1
2

K( x−Xi
h ). We have

V(Yni) =
1
h

∫ ∞

−∞
K2(

x− y
n

) f (y)− h(E
(

f̂h(x)
)
)2 (1.64)

=
∫ ∞

−∞
K2(z) f (x− hz)dz− h( f (x) + o(1))2 (1.65)

→ R(K) f (x) (1.66)

as n→ ∞.

Moreover,

E
(

Y2
niI
(
|Yni ≥ εn

1
2

))
=
∫ ∞

−∞

1
n

K2(
x− y

h
) f (y)I

(
K(

x− y
h

) ≥ ε(nh)
1
2

)
dy

(1.67)

= 0 (1.68)

for n large enough such that supz∈R K(z) < e(nh)
1
2 .
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Thus by the Linderberg-Feller central limit theorem, we have our

required result.

1.5 Bandwidth Selection

Since hAMISE depends on f through R( f ′′), we still require practical

bandwidth selection algorithms.

1.5.1 Normal Scale rules

If f is the N(0, σ2) density, then R( f ′′) = 3
8
√

π
σ−5. The normal scale

rate ĥNS consists of replacing R( f ′′) in hAMISE with 3
8
√

π
σ̂−5, where σ̂

is an estimate of σ. This tends to over-smooth.

1.5.2 Least-squares Cross-Validation

Recall that

MISE( f̂h) = E

(∫ ∞

−∞
f̂ (x)2dx

)
− 2E

(∫ ∞

−∞
f̂h(x) f (x)

)
+
∫ ∞

−∞
f (x)2dx.

(1.69)

Observe that it suffices to minimize the sum of the first two terms.

This depend on the unknown f , but an unbiased estimate is given by

LSCV(h), with

LSCV(h) =
∫ ∞

−∞
f̂h(x)2dx− 2

n

n

∑
i=1

f−i,h(xi) (1.70)

with

f̂−i,h(x) =
1

(n− 1)h ∑
j 6=i

K(
x− xj

h
) (1.71)

Minimization of LSCV(h) yields ĥLSCV .

1.5.3 Biased Cross-Validation

Under regularity conditions,

E
(

R( f̂h)
)
= R( f ′′) +

R(K′′)
nh5 + O(h2). (1.72)
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We can therefore define

BCV(h) =
R(K)

nh
+

1
4

µ2
2(K)R̃( f ′′) (1.73)

where

R̃( f ′′) = R( f̂h1)−
R(K′′)

nh5
1

(1.74)

with h1 a “pilot” bandwidth (c.f Ward and Jones, 1995). Minimization

of BCV(h) yields ĥBCV .

1.5.4 Solve-the-equation Rules

Under smoothness assumptions, we can integrate by parts to obtain

R( f ′′) =
∫ ∞

−∞
f ′′′′(x) f (x)dx = E

(
f ′′′′(X)

)
(1.75)

We can therefore estimate R( f ′′) by using

R̂h2 =
1
n

n

∑
i=1

f̂ ′′′′h2
(xi) (1.76)

where again h2 is a pilot bandwidth. By exploiting the relationship

between hAMISE and the AMISE-optimal bandwidth for estimating

R( f ′′) in this way, we obtain an equation which can be solved numer-

ically to yield ĥSJE.

1.6 Other Topics

1.6.1 Choice of Kernel

The choice of kernel is coupled with the choice of bandwidth, be-

cause if we replace K(x) by 1
2 K( 1

2 ) and we halve the bandwidth,

the estimate is unchanged. We therefore fix the scale by setting

µ2(K) = 1. Minimizing AMISE( f̂h) over K the amounts to mini-
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mizing R(K) subject to

∫ ∞

−∞
K(x)dx = 1 (1.77)∫ ∞

−∞
xK(x)dx = 0 (1.78)

µ2(K) = 1 (1.79)

K(x) ≥ 0 (1.80)

The solution is given by the Epanechnikov kernel (1969).

KE(x) =
3

4
√

5
(1− x2

5
)I
(
|x| ≤

√
5
)

(1.81)

The ratio R(KE)
R(K) is called the efficiency of a kernel K, because it

represents the ratio of the sample sizes needed to obtain the same

AMISE when using KE compared with K.

Kernel Efficiency

Epachnikov 1.0

Normal 0.951

Triangular 0.986

Uniform 0.930

1.6.2 Derivative Estimation

A natural estimator of the r-th derivative f (r) of f is given by

f̂ (r)h (x) =
1

nhr+1

n

∑
i=1

K(
x− xi

h
) (1.82)

obtained from differentiating the standard KDE for f̂ .

Under regularity conditions,

MSE( f̂ (r)h (x)) =
R(K(r))

nh2r+1 f (x) +
1
4

h4µ2
2 f (r−2)(x)2 + o(

1
nh

+ h4). (1.83)

This leads to an optimal bandwidth of order n−
1

2r+5 and a rate of

converge of n−
4

2r+5 .

The intuition is that estimating derivatives of densities is harder

than estimating densities themselves.
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1.6.3 Higher Order Kernels

It is possible to make the dominant integrated squared bias term of

MISE( f̂h) vanish by choosing µ2(K) = 0. This means we have to

allow the Kernel to take negative values, so the resulting estimate

need not be a density.

We can set f̂h(x) = max( f̂h(x), 0) and then renormalize, but then

we lose smoothness. Nevertheless, we define K to be a k-th order

kernel if writing µj(K) =
∫ ∞
−∞ xjK(x)dx, we have

µ0(K) = 1 (1.84)

and µj(K) = 0 for j = 1, . . . , k− 1, µk(K) 6= 0, and

∫ ∞

−∞
|x|k|K(x)|dx < ∞ (1.85)

If f has k continuous bounded derivatives with R( f (k)) < ∞, then it

is shown (example sheet) that hAMISE = cn−
1

2k+1 and

AMISE( f̂hAMISE) = O(n−
2k

2k+1 ) (1.86)

Thus, under increasingly strong smoothness assumptions, conver-

gence rates arbitrarily close to the parametric rate of O(n−1) can be

obtained.

The practical benefit of higher order kernels is not always appar-

ent, and the negativity/smoothness/bandwidth selection problems

mean that they are rarely used in practice.

1.6.4 Local Bandwidths

Choosing h = h(x) is problematic, because the resulting estimate

need not be a density. However, we can define

f̂ (x) =
1
n

n

∑
i=1

Kh(x)(x− Xi) (1.87)

Theory suggests that we should choose h(Xi) = h0 f−
1
2 (Xi), and,

with four derivatives and a second order kernel, one can attain a

“fourth-order kernel” rate of O(n−
8
9 ). There is no negativity problem,
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but we do require pilot bandwidth selection. Difficult to tune well

and rarely used in practice.

1.6.5 Transformation Methods

It may be that f is difficult to estimate, but it may be that we can

construct a strictly increasing, continuously differentiable function

t on the support of f , such that, setting Yi = t(Xi), the density of

Y1, . . . , Yn is easier to estimate. We “back transform” the estimate to

obtain

f̄h(x) =
1
n

n

∑
i=1

Kh(t(x)− t(Xi))t′(x) (1.88)

1.6.6 Multi-Dimensional Density Estimation

The general d-dimensional kernel estimator is of the form

f̂H(x) =
1
n
(det H)

1
2

n

∑
i=1

K(H−
1
2 (x− Xi)) (1.89)

where H is positive definite symmetric bandwidth matrix. The diffi-

culties of choosing the 1
2 d(d + 1) independent entries mean that we

often restrict attention to the diagonal H, or even H = h2 I. In this

latter case,

AMISE( f̂h2 I) =
R(K)
nhd +

1
4

h4µ2
2(K)

∫
Rd
{∆ f (x)}2dx (1.90)

where ∆ f (x) = ∑d
j=1

∂2 f
∂x2

j
(x) is the Laplacian of f at x. This leads to an

AMISE( f̂h2
AMISE I) = O(n−

4
d+4 ) (1.91)

Thus the “curse of dimensionality”, together with bandwidth

selection problems, means that this is only really feasible for d ≤ 4.





2

Nonparametric Regression

2.1 Introduction

Nonparametric regression is a regression which doesn’t assume a

parametric relation between a design matrix X and the response

variable Y.

In the univariate fixed design setting, the design X consists of

ordered real numbers x1 < x2 < · · · < xn, and the response variable

Y we have

Yi = m(xi) + v(xi)
1
2 εi (2.1)

where the εi are iid, E(εi) = 0, V(εi) = 1.

In the random design setting, we have

Yi = m(Xi) + v(Xi)
1
2 εi (2.2)

where εi are iid, E(εi|Xi) = 0, and V(Ei|Xi) = 1. mi is the regres-

sion function that is our interest to estimate. When v(xi) = v (con-

stant), we call it homoscedastic. If it is not, we call it heteroscedastic.

2.2 Local polynomial estimator

Assume a fixed design. The local polynomial estimator m̂h(x; p) of

degree p with kernel K with a bandwidth h is constructed by fitting

a polynomial of degree p using weighted least squares. The weight

Kh(xi − x) is associated with the weight (xi, Yi).
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More precisely, m̂h(x; p) = β̂0 where β̂ = (β̂0, β̂1, . . . , β̂p) which is

minimizing

n

∑
i=1

(Yi − β0 − β1(xi − x) + · · ·+ βp(xi − x)p)2Kh(xi − x) (2.3)

where β ∈ Rp+1

The theory of weighted least squares gives

(XTKX)β̂ = XTKy (2.4)

For p = 0, then a simple expression (Nadaraya-Watson, local

constant) exists:

m̂h(x; 0) =
∑n

i=1 Kh(xi − x)Yi

∑n
i=1 kh(xi − x)

(2.5)

For p = 1, we call this a local linear estimator, and we have the

explicit result

m̂h(x; 1) =
1
n

n

∑
i=1

S2,h(x)− S1,h(x)(xi − x)
S2,h(x)S0,h(x)− S1,h(x)2 Kh(xi − x)Yi (2.6)

with

Sr,h(x) =
1
n

n

∑
i=1

(xi − x)rKh(xi − x) (2.7)

All local polynomial estimators of the form

n

∑
i=1

W(xi, x)Yi (2.8)

This type of estimator is called a linear estimator. This set of weights

{W(xi, x)} is called the effective kernel.

2.3 MSE approximations

For convenience, let xi =
i
n . We consider the following conditions:

(i) m is twice continuously differentiable on [0, 1] and is bounded, v is

continuous.

(ii) h = hn, hn → 0, nh→ ∞.
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(iii) K is a nonnegative probability density, symmetric, has zeros out-

side of [−1, 1]. R(K) =
∫

K2(x)dx < ∞, and µ2(K) =
∫

xK2(x) <

∞.

Theorem 2.1. Under the conditions previously, for x ∈ (0, 1), we have

MSE(m̂h(x; 1)) =
1

nh
R(K)v(x) +

1
4

h4(m′′(x))2µ2(K) + o(
1

nh
+ h4)

(2.9)

Proof (Sketch of proof). As usual, we use a bias
2 + variance calcu-

lation.

bias = E(m̂h, x; 1)−m(x) (2.10)

= E

(
1
n

n

∑
i=1

S0,h(x)− S1,h(x)(xi − x)
DEN

Kh(xi − x)Yi

)
−m(x)

(2.11)

=
1
n

n

∑
i=1

S2,h(x)− S1,h(x)(xi − x)
DEN

Kh(xi − x) m(xi)︸ ︷︷ ︸
m(x)+(xi−x)m′(x)+ 1

2 (xi−x)2m′′(x)

−m(x)

(2.12)

=
m(x)
DEN

{
S2,h(x)S0,h(x)− S2

1,h(x)
...

} (2.13)

+
m′(x)
DEN

{
S2,h(x)S1,h(x)− S1,h(x)S2,h(x)

DEN
} (2.14)

+
1
2

m′′(x){
S2

2,h(x)− S1,h(x)S3,h(x)

S2,h(x)S0,h(x)− S2
1,h(x)

} −m(x) (2.15)

= m(x) + 0 +
1
2

m′′(x){ (h
2µ2(K) + o(h2))2 − o(h)o(h3)

h2µ2(K)(1 + o(1))− o(h2)
} −m(x)

(2.16)

= m(x) +
1
2

m′′(x)
h4µ2

2(K) + o(h4)

h2µ2(K) + o(h2)
−m(x) (2.17)

= m(x) +
1
2

m′′(x)h2µ2(K) + o(h2) + REM−m(x) (2.18)

=
1
2

m′′(x)h2µ2(K) + o(h2) (2.19)
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since |REM| = o(h2). Note that we have

Sr,h(x) =
1
n

n

∑
i=1

(xi − x)rKh(xi − x) (2.20)

=
1
n

n

∑
i=1

(xi − x)r 1
h

K(
xi − x

h
) (2.21)

=
1

nh
hr

n

∑
i=1

(
xi − x

h
)rK(

xi − x
h

) (2.22)

= hr{
∫ 1

−1
urK(u)du + o(1)} (2.23)

= hrµr(K) + o(hr) (2.24)

from bounded support of K, with |xi−x|
h ≤ 1.

For the variance, we need the preliminary calculations that

tr,h(x) =
1
n

n

∑
i=1

(xi − x)rK2
h(xi − x) (2.25)

= hr−1µr(K2) + o(hr−1) (2.26)

V(m̂h(x; 1)) =
1
n2

n

∑
i=1

(
S2,h(x)− S1,h(x)(xi − x)

DEN
)2K2

h(xi − x)v(xi)

(2.27)

=
1
n

1
n

n

∑
i=1

S2
2,h(x)− 2(xi − x)S1,h(x)S2,h(x) + (xi − x)2S2

1,h(x)

DEN2 K2
h(xi − x)v(x) + REM2

(2.28)

=
1
n

S2
2,h(x)t0,h(x)− 2S1,h(x)S2,h(x)t1,h(x) + S2

1,h(x)t2,h(x)
DEN

v(x) + REM2

(2.29)

=
v(x)

n
(h2µ2(K) + o(h2))2(h−1µ0(K2) + o(h−1))− 2o(h)(h2µ2(K) + o(h2))(µ1(K2) + o(1)) + o(h2)(hµ2(K2) + o(h))

(h2µ2(K)(1 + o(1)) + o(h2))2

(2.30)

=
v(x)

n
h3µ2

2(K)µ0(K2) + o(h3)

h4µ2
2(K) + o(h4)

+ REM2 (2.31)

=
v(x)

n
1
h

R(K) + o(
1

nh
) (2.32)

where |REM2| = o( 1
nh ) With some further work, we can integrate

term by term the asymptotic expansion to obtain MISE(m̂(·; 1)).



non-parametric statistics 25

For p even, the bias is more complicated. Moreover, for p even, the

bias at boundary point x = αh, α ∈ [0, 1) has larger order than the

bias at the interior point.1 1 In the demonstration, asymmetry of
Beta(2, 4) distributions combined with
the negative slope of the true regression
function, we see that local constant
estimators has an upward bias. In
contrast, local linear estimators adapts
to this

2.4 Splines

2.4.1 Motivation

Let n ≥ 3, and consider for a fixed homoscedastic design

Yi = m(xi) + σεi (2.33)

where εi are iid with E(εi) = 0, V(εi) = 1.

Another natural idea to estimate the regression curve m is to bal-

ance the fidelity of the fit to the data and the roughness of the result-

ing curve. This can be done by minimizing

n

∑
i=1

(Yi − g̃(xi))
2 + λ

∫
g̃′′(x)2dx (2.34)

over g̃ ∈ S2[a, b], the set of twice continuously differentiable functions

on [a, b]. λ is a regularization parameter. As λ → ∞, the curve is

very close to the linear regression line. As λ → 0, the resulting curve

closely fits the observations.

2.4.2 Cubic Spline

Definition 2.2. A cubic spline is a function g : [a, b]→ R satisfies

(i) g is a cubic polynomial on [(a, x1), (x1, x2), . . . , (xn, b)].

(ii) g is twice continuously differentiable on [a, b].

Proposition 2.3. For a given g = (g1, . . . , gT
n ), there exists a unique

natural cubic spline g with knots x1, . . . , xn - so g(xi) = gi for i = 1, . . . , n.

Moreover, there exists a nonnegative definite matrix K such that

∫ b

a
g′′(x)2dx = gTKg (2.35)

We call g the natural cubic spline interpolant to g at x1, . . . , xn.
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Theorem 2.4. For any g̃ ∈ S2[a, b] satisfying g̃(xi) = gi, i = 1, . . . , n, the

cubic spline interpolant to g at g = g1, . . . , gn uniquely minimizes

∫ b

a
g̃′′(x)2dx (2.36)

over g̃ ∈ S2[a, b].

Proof. Let g̃ ∈ S2[a, b] satisfy g̃(xi) = gi, i = 1, . . . , n. Let h = g̃− g

such that h(xi) = 0.

Then

R(g̃′′) =
∫ b

a
(h′′ + g′′)2dx = R(h′′) + R(g′′) + 2

∫ b

a
h′′(x)g′′(x)dx

(2.37)

Then

∫ b

a
h′′(x)g′′(x) = −

∫ b

a
g′′′(x)h′(x)dx + g′′h′(x)|ba (2.38)

= −
∫ xn

x1

g′′′(x)h′(x)dx (2.39)

= −
n−1

∑
i=1

∫ xi+1

xi

g′′′(x)h′(x)dx (2.40)

= −
n−1

∑
i=1

g′′′(xi)
∫ xi+1

xi

h′(x)dx (2.41)

= −
n

∑
i=1

g′′′(xi+1)(h(xi+1)− h(xi)) (2.42)

= 0 (2.43)

since g′′(x) = 0 at a and b.

Thus,

R(g̃′′) = R(g′′) + R(h′′) ≥ R(g′′) (2.44)

with equality when R(h) = 0 ⇐⇒ h is linear on (xi, xi+1), with

h(xi+1) = h(xi) = 0. Thus, h ≡ 0.
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2.4.3 Natural Cubic Smoothing Spline

Recall that Yi = m(xi) + σεi, m ∈ S2[a, b], 0 < x1 < · · · < xn < b. We

seek to minimize

Gλ(g̃) =
n

∑
i=1

(Yi − g̃(xi))
2 + λ

∫ b

a
g̃′′(x)2dx (2.45)

over g̃ ∈ S2[a, b].

Theorem 2.5. For each λ > 0, there is a unique solution ĝ minimizing

G(g̃)over g̃ ∈ S2[a, b]. This is the natural cubic spline

ĝ = (I + λK)−1Y (2.46)

Proof. Suppose g̃ is not a natural cubic spline. Then, there exists a

unique natural cubic spline interpolant g to g̃(x1, . . . , g̃(xn)). Then, by

the previous theorem, we know

∫ b

a
g′′(x)2dx <

∫ b

a
g̃′′(x)2dx ⇒ G(g) > Gλ(g) (2.47)

We may therefore suppose g as a natural cubic spline.

Let g = (g(x1), . . . , g(xn)). Then

Gλ(g) = (Y− g)T(Y− g) + λgTKg (2.48)

= YTY− 2gTY + gTg + λgTKg (2.49)

= gT(I + λK)g + YTY− 2gTY (2.50)

= (g− (I + λK)−1Y)T(I + λK)(g− (I + λK)−1Y) (2.51)

+ YTY−YT(1 + λK)−1Y (2.52)

We know K is nonnegative definite and λ > 0, so I + λK is positive

definite.

Thus Gλ(g) is uniquely minimized by ĝ = (I + λK)−1Y.

We call ĝ that natural cubic smoothing spline with data (xi, Yi).
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2.4.4 Choice of λ

Cross validation method validates the estimated curve without the

i-th observation by comparing the i-th value

CV(λ) =
1
n

n

∑
i=1

(Yi − ĝ−i,λ(xi))
2 (2.53)

where ĝ−i,λ is chosen by minimizing Gλ over all data points except

the i-th,

n

∑
j 6=i

(Yj − g̃(xj))
2 + λ

∫ b

a
g̃′′(x)2dx (?)

Theorem 2.6.

CV(λ) =
1
n

n

∑
i=1

(
Yi − ĝλ(xi)

1− Aii
)2 (2.54)

where A = (I + λK)−1 and

∫ ∞

−∞
ĝ′′λ(x)2dx = ĝλ(x)TKĝλ(x) (2.55)

Proof. Note that ĝ−i,λ also minimizes

ĝ−i,λ(xi)− g̃(xi)
2 + (?) (??)

over g̃ ∈ S2[a, b].

Then

(??) ≥ (?) (2.56)

≥
n

∑
j 6=i

(Yj − ĝ−i,λ(xj))
2 +

∫ b

a
ĝ−i,λ(x)2dx (2.57)

= (ĝ−i,λ(xi)− ĝ−i,˘)
2 +

n

∑
j 6=i

(Yi − ĝ−i,˘(xj)) +
∫ b

a
gi,˘(x)2dx (2.58)

Note that (??) = ∑n
j=1(Y

[i]
j − g̃(xi))

2 + λg̃′′(x)2dx where

Y[i]
j =

Yj i 6= j

ĝ−i,λ(xi) i = j
(2.59)



non-parametric statistics 29

Then, we can see that (??) has the same form as the original prob-

lem, so

ĝ−i,λ = (I + λK)−1Y[i] = AY[i] (2.60)

ĝ−i,λ(xi) =
n

∑
j=1

AijY
[i]
j = Aii ĝ−i,λ(xi) + ∑

j 6=i
AijYj. (2.61)

and so

ĝ−i,λ(xi) =
∑j 6=i AijYj

1− Aii
. (2.62)

Therefore

CV(λ) =
1
n

n

∑
i=1

(Yi −
∑j 6=i AijYj

1− Aii
)2 (2.63)

=
1
n

n

∑
i=1

(
Yi −∑n

j=1 AijYj

1− Aii
) (2.64)

=
1
n

n

∑
i=1

(
Yi − ĝλ(xi)

1− Aii
)2. (2.65)

By replacing Aii with the average of diagonal elements of A, we

have a generalized cross-validation

GCV(λ) =
1
n

n

∑
i=1

(
Yi − ĝλ(xi)

1− 1
n Tr A

)2

(2.66)

Aii is analogous to the leverage of the i-th observation in the linear

regression. Modified (GCV) CV down-weights observations with

high leverage.

Consider the model Yi = m(xi) + σεi, with fixed design. m is twice

continuously differentiable on [a, b], so

n

∑
i=1

(Yi − g̃(xi))
2 + λ

∫
g̃′′(x)2dx (2.67)

with g̃ ∈ S2[a, b].

Cubic spline can be expanded with truncated power series basis

functions: 1, x, x2, x3, (x − x1)
3
+, . . . (x − xn)3

+, (n number of basis

functions can be obtained — see example sheet).
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2.4.5 Regression Spline and Penalized Spline

One possible issue with cubic spline is that we need to estimate pa-

rameters of dimension n. One possible solution is to use a smaller

number of knots — say N — and locate them at ξ1, . . . , ξN . Then, we

fit the curve using standard least squares, and so minimize

n

∑
i=1

(Yi −
p

∑
j=0

β jx
j
i −

N

∑
j=1

βpj(xi − ξ j)
p
+)

2 (2.68)

over β = (β0, β1, . . . , βp, βp1, . . . , βpN)
T ∈ Rp+1+N

Using a matrix form, this is equivalent to ‖Y− Xβ‖2
2, where

X =

1 x1 x2
1 ... xp

1 (x1 − ξ1)
p
+ ... (x1 − ξN)

p
+

1 x2 x2
2 ... xp

2 (x2 − ξ1)
p
+ ... (x2 − ξN)

p
+

 (2.69)

The solution β̂ = (XTX)−1XTY gives the estimated curve at the

observations x = (x1, . . . , xn). The points

((x1, (Xβ̂)1), . . . , (xn, (Xβ̂)n)) (2.70)

give the fitted curve. The curve corresponding to β̂ is called the re-

gression spline of order p with knots at (ξ1, . . . , ξN).

It is recommended to use N = min( n
4 , 35) and locate the k-th knot

at ( k
N+1 )-th sample quantile of design points.

Computationally, it is better to use the equivalent β-splines (de

Boor, 1978).

Note that N is playing the role of a smoothing parameter that

controls the bias-variance tradeoff. Higher N reduces the bias but

increases the variance.

An alternative to choosing N is to use large N but penalize large

estimated coefficients. That is, we add a penalty term λBT DB where

D is a (p + 1 + N × p + 1 + N) matrix with all elements zero except

the bottom-right N × N block, which is the IN , the N-dimensional

identity matrix.

We have that this then has the solution β̂λ = (XTY + λD)−1XTY.

The fitted curve corresponding to β̂λ is called the penalized spline

of order p with knots (ξ1, . . . , ξN).



non-parametric statistics 31

2.4.6 Equivalent Kernel

From the solution ĝλ(x) = (I + λK)−1Y, we have

ĝλ(x) =
n

∑
i=1

Wni(x)Yi (2.71)

where the Wni(x) does not depend on Yi.

Connections between smoothing splines and kernel regression

estimators is established by Silverman (1984). He proved that under

some regularity conditions, and random design,

Wni(x) ≈ 1
n f (xi)

Kh(xi)
(Xi − x) (2.72)

where f is a density of distribution of X, h(Xi) = ( n
f (Xi)

)
1
4 , and

K(t) = 1
2

exp(− |t|√
2
) sin(

|t|√
2
+

π

4
) (2.73)

This provides intuition to help understand how smoothing splints

assign weights to x near the observations.

We have m̂h(x; 1) = ∑n
i=1 W(xi, x)Yi where W(xi, x) = 1

n f (Xi)
Kh(xi−

x).

2.5 Multivariate Regression and Additive Models

A d-dimensional nonparametric regression suffers the same curse of

dimensionality as we saw in kernel density estimation.

However, if m is smooth around x0 ∈ Rd, so m(x) ≈ m(x0) +

∑d
i=1(xj − x0j)

∂
∂xj

m(x0).

This motivates us to use

Yi = α +
d

∑
j=1

gjxij + εi, i = 1, . . . , n (2.74)

and we minimize

n

∑
i=1

(Yi − α−
d

∑
j=1

gj(xij))
2 +

d

∑
j=1

λj

∫
g′′j (x)2dx (2.75)

Note that gj(xij) = Yi − α−∑k 6=j gk(xik).
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We have then a back-fitting algorithm that solves the minimization

problem

(i) α̂ = 0, ĝj = 0, j = 1, . . . , d.

(ii) For j = 1, . . . , d,

ĝj = Smooth((xi, Yi − α̂−∑
k 6=j

ĝk(xik))∀i (2.76)

and ĝj = ĝj − 1
n ∑n

i=1 ĝj(xij)

(iii) Repeat until convergence.
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Nearest Neighbor Classification

We have (X1, Y1), . . . , (Xn, Yn) where Yi ∈ {0, 1}. The regression func-

tion E(Y|X = x) is denoted by ν(x), and we let µ be the distribution

of X - so P(X ∈ A) = µ(A).

A function g : Rd → {0, 1} is called a classifier. If the distribution

of (X, Y) are known, we can minimize the risk P(g(X) 6= Y) = L(g)

over g : Rd → {0, 1}. The minimizer g? is called a Bayes classifier,

and L(gd) is called the Bayes risk.

Lemma 3.1. For a classifier g̃ which has the form

g̃(x) =

1 ν̂(x) > 1
2

0 otherwise
(3.1)

we have

P(g̃(X) 6= Y)− L? ≤ 2E(‖ν̂(X)− ν(X)) (3.2)

When we have data {(X1, Y1), . . . , (Xn, Yn)}, we want to construct

a sequence of classifiers {gn} such that the risk using gn is close to

the Bayes risk with high probability.

Definition 3.2 (k-nearest neighbor classification). A k-nn classifier gn

is defined by

gn(x) =

1 ∑n
i=1 Wni(X)I(Yi = 1) > ∑n

i=1 Wni(X)I(Yi = 0)

0 otherwise
(3.3)
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which is equivalent to

n

∑
i=1

Wni(X)I(Yi = 1) >
1
2
⇐⇒

n

∑
i=1

Wni(X)Yi >
1
2

(3.4)

where

Wni(X) =
1
k

(3.5)

if Xi is a k-nearest neighbor of X, and zero otherwise.

Definition 3.3. For a certain distribution of (X, Y), we say gn is con-

sistent if P(gn(X) 6= Y)− L? → 0 .

We say gn is strongly consistent if

P
(

lim
n→∞

L(gn) = L(g?)
)
= 1 (3.6)

Theorem 3.4. If k → ∞, k
n → 0, then for all distributions of (X, Y), the

k-nn estimates gn are consistent.

Proof. Preliminaries:

(i) By a corollary of Lemma 1,

P(gn(X) 6= Y|Dn)− L? ≤ 2
√∫

Rd
(ηn(x)− η(x))2dµ(x) (3.7)

(ii) If k→ ∞, k
n → 0, then

‖X(k)(X)− X‖ as→ 0 (3.8)

(examples class)

(iii) Stones Lemma - for any integrable function f , any n,

1
k

k

∑
i=1

E(| f (Xi(X))|) ≤ γdE(| f (X)|) (3.9)

where γd is a constant only depending on d.

We can now complete the proof. By the first result, it suffices to

prove

E
(
(ηn(X)− η(X))2

)
→ 0 (3.10)

with ηn(X) = ∑n
i=1 Wni(X)Yi.
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Recall that ηn(X) = ∑n
i=1 Wni(X)Yi and Wni(X) is 1

k if and only

if Xi is among the k-nearest neighbors of X. In order to use the bias-

variance decomposition, let E(ηn(X)|X, X1, . . . , Xn) = ∑n
i=1 Wni(X)η(Xi) :=

η̃(Xi). Then

E
(
(ηn(X)− η(X))2

)
≤ 2E

(
(ηn(X)− η̃(X))2

)
+ 2E

(
(η̃(X)− η(X))2

)
(3.11)

or 2 time variance + 2 times Bias squared.

As ∑n
i=1 Wni(X) = 1, and Cauchy-Swartz, we have

bias
2 = E

(
(

n

∑
i=1

Wni(X)(η(Xi)− η(X)))2

)
(3.12)

≤ E

(
(

n

∑
i=1

Wni(X)(η(Xi)− η(X))2)

)
(3.13)

Now, consider a continuous function 0 ≤ η? ≤ 1 which approx-

imates η such that (there exists η? since a continuous function is

dense in L2(µ)), E
(
(η?(X)− η(X))2) ≤ ε.

Also, we require η? satisfies (using uniform continuity of η?) that,

for a given ε > 0, there exists δ > 0 such that (η?(x)− η?(y))2leqε

when ‖x − y‖ ≤ δ. Then, by using the previous result, uniform

continuity of η?, and the approximating property of η? for each three

splitted terms,

bias
2 ≤ E

(
n

∑
i=1

Wni(X)(η(Xi)− η(X))2

)
(3.14)

≤ 3E

(
n

∑
i=1

Wni((η(Xi)− η?(Xi))
2 + (η?(Xi)− η?(X))2 + (η?(X)− η(X))2)

)
(3.15)

≤ 3((γdE
(
(η(X)− η?(X))2

)
+

n

∑
i=1

Wni(X)(ε + I(‖Xi − X‖ > δ))) + ε)

(3.16)

≤ 3(γdε + 2ε +
n

∑
i=1

Wni(X)I(‖Xi − X‖ > δ)) (3.17)

→ 0. (3.18)

For the variance term, we use the fact that for i 6= j, E
(
(Yi − η(Xi))(Yj − η(Xj))|X, X1, . . . , Xn

)
=
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0. Then

Variance = E
(
(ηn(X)− η̃(X))2

)
(3.19)

= E

(
(

n

∑
i=1

Wni(X)(Yi − η(Xi)))
2

)
(3.20)

= E

(
E

(
n

∑
i=1

n

∑
j=1

(Wni(X)Wnj(X)(Yi − η(Xi)(Yj − η(Xj))))|X, X1, . . . , Xn

))
(3.21)

= E

(
n

∑
i=1

Wni(X)2(Yi − η(Xi))
2

)
(3.22)

≤ E

(
n

∑
i=1

Wni(X)2

)
(3.23)

≤ E

(
max

i
Wni(

n

∑
i=1

Wni(X))

)
(3.24)

= E

(
max

i
Wni

)
(3.25)

=
1
k
→ 0. (3.26)

where the second last line follows as |Yi − η(Xi)| ≤ 1.
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Minimax Lower Bounds

As a first attempt to understand a nonparametric estimation problem,

we consider a minimax risk,

R(Θ) = inf
θ̃

sup
θ∈Θ

Eθ L( j̃, θ). (4.1)

If we can find our θ̂?, which minimizes supθ∈Θ Eθ L(θ̃, θ) we call

θ̂? our minimax estimator. However, it is very difficult to find θ̂?. Let

cγn ≤ R(Θ) ≤ Cγn, we call γn is minimax rate of convergence.

For instance, for Θ = {m, m is twice continuously differentiable on [0, 1], m′′(x) < ∞},
then

sup
m∈Θ

E
(
(m̂h(x; 1)−m(x))2

)
≤ Cn−

4
5 (4.2)

Question — can we also calculate

∫
m̃

sup
m∈Θ

E
(
(m̃(x0)−m(x0))

2
)
≥ cn−

4
5 (4.3)

Lemma 4.1 (Le Cam’s two points lemma). Let P be probability measures

on (X ,A), and let (Θ, d) be the pseudo-metric space, with

d : Θ×Θ→ [0, ∞) (4.4)

given by

d(θ1, θ2) = d(θ2, θ1), d(θ1, θ2) + d(θ2, θ3) ≥ Ad(θ1, θ3) (4.5)

Let θ : P → Θ, θ(P) is the parameter of interest (P ∈ P). With

θ0 = θ(P0) , θ1 = θ(P1), under two conditions,
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(i) d(θ0, θ1) ≥ δ > 0,

(ii) h2(P0, P1) ≤ C < 1

where h2(P0, P1) is the Hellinger distance
∫
(
√

dP0 −
√

dP1)
2, the we have

for all estimators θ̃,

sup
P∈P

EPd(θ̃, θ(P)) ≥ Aδ

2
(1−

√
C) (4.6)

Proof.

sup
P∈P

EPd(θ̃, θ(P)) ≥ max
P∈{P0,P1}

EPd(θ̃, θ(P)) (4.7)

≥ 1
2
(EP0 d(θ̃, θ(P0)) + EP1 d(θ̃, θ(P1))) (4.8)

(4.9)

Let d(θ̃, θ(P0)) + d(θ̃, θ(P1)) = DEN, and d(θ̃,θ(P0))
DEN = f0, d(θ̃,θ(P1))

DEN =

f1 .

Note that DEN ≥ Ad(θ(P0), θ(P1)) ≥ Aδ, by our assumptions.

Then our RHS is given as

1
2
(EP0( f0 · DEN) + EP1( f1 · DEN)) ≥ 1

2
Aδ(EP0 f0 + EP1 f1) (4.10)

By the Neyman-Pearson lemma, we have

≥ 1
2

Aδ
∫

min(P0, P1) =
1
2

Aδ(1− TV(P0, P1)) (4.11)

From the third example sheet, we can show that (TV(P0, P1))
2 ≤

h2(P0, P1). By assumption, this is bounded above by C. Using this

result, we have

≥ 1
2

Aδ(1−
√

C) (4.12)

Remark 4.2. From the proof,

(i) Sample size n does not seem to appear in the lemma. However, P is

usually the joint distribution of n samples. Thus, the condition on the

Hellinger distance gives some conditions on n.

(ii) The two conditions work also in the opposite direction.
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(iii) We can extend the two points lemma to the multiple testing case.

Theorem 4.3 (Nonparametric regression). Let Yi = m(xi) + εi,

εi ∼ N(0, 1), xi = i
n , m ∈ Θ with Θ the set of all twice continuously

differentiable functions on [0, 1], m′′(x) < ∞. Then for any estimator m̃ and

any x0 ∈ [0, 1],

sup
m∈Θ

E
(
(m̃(x)−m(x0))

2
)
≥ Cn−

4
5 (4.13)

Proof. Let P be the set of distributions of Y1, . . . , Yn with Yi = m(xi) +

εi and εi ∼ N(0, 1), m ∈ Θ. Let Θ be as given before.

Then using (x− y)2 + (y− z)2 ≥ 1
4 (x− z)2, we have

d(m0, m1) = (m0(x0)−m1(x0))
2 (4.14)

with A = 1
4 .

Let m0 = 0 on x ∈ [0, 1]. Let m1 be bounded away from zero

at some point x0 > 0. Thus m1(x) = h2K( x−x0
h ) , where K(t) =

a exp(− 1
1−t2 ) for t ≤ 1 and a a normalizing constant so K(t) is a

kernel, and let h = c̃n−
1
5 .

Let P0 be the distribution of Y1, . . . , Yn, with Yi = m0(xi) + εi = εi,

and P1 be the equivalent with Yi = m1(xi) + εi.

Checking the first condition, we have (d(m0, m1)) = (h2K(0))2 =
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h2a2 exp(−2) = δ. Checking the second condition, we have

h2(P0, P1) ≤ KL(P0, P1) (4.15)

=
∫

. . .
∫ n

∏
i=1

φ(ui) log
∏n

i=1 φ(ii)
∏n

i=1 φ(ui −m1(xi))
du1 . . . dun

(4.16)

=
∫

. . .
∫ n

∏
i=1

φ(ui)
n

∑
i=1

log exp(−uim1(xi) +
1
2

m1(xi)
2)

(4.17)

=
∫

. . .
∫ n

∏
i=1

φ(ui)
n

∑
i=
(−uim1(xi) +

1
2

m1(xi)
2)du1 . . . dun

(4.18)

=
1
2

n

∑
i=1

m1(xi)
2 (4.19)

=
1
2

n

∑
i=1

h4a2 exp2(− 1
1− ( xi−x0

h )2
)I(|xi − x0| ≤ h) (4.20)

≤ 1
2

h4a2
n

∑
i=1

I(x0 − h ≤ xi ≤ x0 + h) (4.21)

≤ 1
2

h4a22nh (4.22)

= a2nh5 (4.23)

and as h ∼ n−
1
5 , we have our result. with the conclusion that this is

bounded by 1
8 δ(1− 1√

2
).
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Extreme Value Theory

Let Xn be an IID sample from a distribution function F, and denote

X(n) = max{X1, . . . , Xn} as the maximum order statistic.

Without any normalization, X(n) → x? = inf{x : F(x) = 1}.
This is not overly interesting, since the limit distribution is degen-

erate (we call F non-degenerate if there does not exists a ∈ R such

that F(x) = I(x ≥ a))

We may ask if there exists {an} > 0, {bn} > 0, and a non-

degenerate G such that

P

(X(n) − bn

an
≤ x

)
→ G(x) (5.1)

for all continuity points x of G

Classical extreme value theory starts by asking:

(i) What kind of G appears in the limit of (5.1)?

(ii) Can we characterize F such that (5.1) holds for a specific limit

distribution G?

For the first question, we have the Extremal Types theorem. For

the second question, we have the “domain of attraction” problem.

5.1 Preliminaries

Recall that P
(

X(n) ≤ x
)

= F(x)n. We say that F is in the domain

of attraction of G (F ∈ D(G)) if there exists {an} > 0, {bn} and a
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non-degenerate G such that

P

(X(n) − bn

an
≤ x

)
= [F(anx + bn)

n → G(x) for all continuity points x of G].

(5.2)

and write F(anx + bn)n ↪→ G(x).

We say that G1 and G2 are of same type if G1(ax + b) = G2(x) for

some a > 0, b.

The next lemma shows that if F ∈ D(G1) and F ∈ D(G2), then G1

and G2 are of the same type.

Lemma 5.1. Suppose Xn is an IID sample from F and there exists {an} >
0, {bn} and non-degenerate G such that F(anx + bn)n ↪→ G(x). Then there

exists {αn} > 0, , {βn} and non-degenerate G? such that F(αnxβn)
n ↪→

G?(x). if and only if αn
an
→ a for some a > 0, and βn−β

an
→ b for some b.

Then we can let G?(x) = G(ax + b).

Proof. See Galambos (1978), Lemma 2.2.3

Definition 5.2. G is max-stable if for every n ∈ N, there exists

{an} > 0, {bn} such that Gn(anx + bn) = G(x)

Theorem 5.3. D(g) is non-empty if and only if G is max-stable.

Proof. (⇐) If G is max-stable, Gn(anx + bn) ↪→ G(x). Thus, by defini-

tion, G ∈ D(G).

(⇒) Let F ∈ D(G). Then, there exists {an} > 0, {bn} such that

Fn(anx + bn) ↪→ G(x). For each k ∈N, we replace n by nk, and then

Fnk(ankx + bnk) ↪→ G(x) (5.3)

Thus Fn(ankx + bnk) ↪→ G
1
k (x). Since G

1
k is also non-degenerate,

G
1
k (x) = G(akx + bk), which implies G(x) = Gk(akx + bk) as they are

of the same type.

Theorem 5.4. If F ∈ D(G), then G must belong to the following distribu-

tions (within type):

(i) Frechet — G1,α(x) = exp(−x−α), x > 0, α > 0

(ii) Negative Weibull — G2,α = exp(−(−x)α), x < 0, α > 0

(iii) Gumbel — G3(x) = exp(− exp(−x)), x ∈ R.
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Conversely, these distributions can appear as such limits in (5.1).

Remark 5.5. We have

(i) Using X(1) = −max{−X1, . . . ,−xn}, we have equivalent theorems in

terms of normalized minima.

(ii) Sometimes, we cannot have non-degenerate G of normalized maxima —

for example X1, . . . , Xn ∼ Bern( 1
2 ), X(n).

(iii) We can combine these three types into Generalized Extreme Value Distri-

bution (GEV) —

G(x; µ, σ, γ) = exp(−(1 + γ(
x− µ

σ
))−

1
γ ) (5.4)

with 1 + γ( x−µ
σ ) > 0, µ ∈ R, γ ∈ R, σ > 0.

We have Frechet corresponds to γ > 0, α = 1
γ , NW is γ < 0, α = − 1

γ ,

and Gumbel corresponds to the case where γ→ 0.

Proof (non-examinable). We show Yn =
X(n)−bn

an

d→ Y, with Gγ(x) =

exp(−(1 + rx)−
1
r )

Then, using Helly’s theorem, we have E(z(Yn)) → E(z(Y)) for all

continuous bounded z. Then the LHS is given by

∫
z

x− bn

an
dFX(n)

(x) = n
∫

z(
x− bn

an
)F(x)n−1dF(x) (5.5)

and changing variables so F(x) = 1− v
n , x = . . .

5.2 Necessary and Sufficient Conditions for Convergence

We say a function l : [C, ∞]→ (0, ∞) is “slowly varying” if limx→∞
l(tx)
l(x) =

1 for all t > 0. For example, l(x) = log x, log log x, (log x)α.

We say a function rα : [C, ∞) → (0, ∞) is “regularly varying” with

an index a ∈ R if rα(x) = x−αl(x) where l is slowly varying - so

r2(x) = x−2 log x.

We define an expected residual lifetime as

R(x) = E(X− x|X > x) =
1

1− F(x)

∫ x?

x
(1− F(y))dy (5.6)

where x? = inf{x : F(x) = 1}, and F(x) = 1− F(x)
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Theorem 5.6. F ∈ D(G1,α) if and only if x? = ∞, F(x) = x−αl(x) where

l is slowly varying. We can choose bn = 0, an = F−1(1− 1
n ) for which

Fn(anx + bn) ↪→ G1,α(x) is satisfied.

F ∈ D(G2,α) if and only if x? < ∞, F(x? − 1
x ) = x−αl(x), with l slowly

varying for x > 0. We can choose bn = x?, an = x? − F−1(1− 1
n ) for

convergence.

F ∈ D(G3) if and only if

F(x + tR(x))
F(x)

→ e−t (5.7)

We can choose bn = F−1(1− 1
n ), an = R(bn).

Example 5.7. (i) Let F(x) = 1− log2(x+1)
x2 where x geq1. Then F ∈ G1,2.

(ii) Let F(x) = 1− (x? − x)3 where x? − 1 ≤ x ≤ x? for some x? ∈ R.

Then F ∈ G2,3.

(iii) Let F(x) = 1− 1
1+ex . Then F ∈ G3.

Lemma 5.8. Suppose there exists an > 0, bn such that n(1− F(anx +

bn))→ u(x). Then

Fn(anx + bn) ↪→ exp(−u(x)) (5.8)

Proof. Taking the log of the left hand side, we have

n log F(anx + bn) = n log(1− (1− F(anx + bn))) (5.9)

= n(−(1− F(anx + bn))−
1
2
(1− F(anx + bn))

2 + . . . )

(5.10)

= −u(x) (5.11)

Thus the left hand side converges to exp(−u(x)).

Proof (Proof of sufficient part of first part of theorem). Proof of (1) -

the sufficient part. Suppose x? = ∞, F(x) = x−αl(x). Use an and bn

as in the theorem. Then we want to prove Fn(anx + bn) ↪→ G1,α(x) =

exp(−x−αI(x > 0)).

Using the lemma, we instead prove

n(1− F(anx))→ x−αI(x > 0) + ∞I(x < 0) . (5.12)
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Let x < 0. Note that an = F−1(1− 1
n ) → x? = ∞. Thus anx → −∞,

and n(1− F(anx))→ ∞.

Let x > 0. Note that F(an) = F(F−1(1 − 1
n )) ≥ 1 − 1

n , and

F(an − δ) ≤ 1− 1
n . Rearranging, this gives n ≥ 1

1−F(an−δ)

Note also we have

n
(1− F(anx))
(1− F(anx))

(1− F(an)) (5.13)

which converges to x−α, as F = x−αl(x).

Thus, it suffices to show that n(1− F(an))→ 1. Note that

1 ≥ n(1− F(an)) (5.14)

≥ 1− F(an)

1− F(an − δ)
(5.15)

≥ 1− F(an)

1− F(an(1− ε))
(5.16)

=
a−α

n l(an)

a−α
n (1− ε)−αl(an(1− ε))

(5.17)

= (1− ε)α (5.18)

and as ε can be made arbitrarily close to zero, we obtain our result.

Proof (Proof of sufficient part of third part of theorem). Suppose

F(x + tR(x))
F(x)

→ e−t (5.19)

and we use an, bn as in the theorem. As in the lemma, we seek to

prove

n(1− F(anx + bn)) = n(1− F(R(bn)xn + bn))→ e−x. (5.20)

To use the condition, note that the left hand side is given as

n(1− F(bn + xR(bn)))

1− F(bn)
(1− F(bn)) (5.21)

and the inner term converges to e−x by assumption.
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Thus, it suffices to prove n(1− F(bn))→ 1.

1 ≥ n(1− F(bn)) (5.22)

≥ 1− F(bn)

1− F(bn − δ)
(5.23)

≥ 1− F(bn)

1− F(bn − εR(bn))
(5.24)

→ 1
e−(−ε)

= e−ε → 1 (5.25)

Choose ε such that 1− F(bn − δ) ≤ 1− F(bn − εR(bn)).
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