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1. Lecture 1 - Tuesday 1 March

Definition 1.1 (Finite dimensional distribution). The finite dimensional distribution of a
stochastic process X is the joint distribution of (Xt1 , Xt2 , . . . , Xtn)

Definition 1.2 (Equality in distribution). Two random variables X and Y are equal in distri-
bution if P(X ≤ α) = P(Y ≤ α) for all α ∈ R. We write X

d
=Y .

Definition 1.3 (Strictly stationary). A stochastic process X is strictly stationary if

(Xt1 , Xt2 , . . . , Xtn) = (Xt1+h, Xt2+h, . . . , Xtn+h)

for all ti, h.

Definition 1.4 (Weakly stationary). A stochastic process X is weakly stationary if E (Xt) =

E (Xt+h) and Cov (Xt, Xs) = Cov (Xt+h, Xs+h) for all t, s, h.

Lemma 1.5. If E
(
X2

t

)
< ∞, then strictly stationary implies weakly stationary.

Example 1.6.
• The stochastic process {Xt} with Xt all IID is strictly stationary.
• The stochastic process Wt with Wt N(0, t) and Xt −Xs independent of Xs (for s < t) is

not strictly or weakly stationary.

Definition 1.7 (Stationary increments). A stochastic process has stationary increments if

Xt −Xs
d
=Xt−h −Xs−h

for all s, t, h.

2. Lecture 2 - Thursday 3 March

Example 2.1. Let Xn, n ≥ 1 be IID random variables. Consider the stochastic process {Sn} where
Sn =

∑n
j=1 Xj . Then {Sn} has stationary increments.

2.1. Concepts of convergence. There are three major concepts of convergence of random vari-
ables.

• Convergence in distribution
• Convergence in probability
• Almost surely convergence

Definition 2.2 (Convergence in distribution). Xn
d→X if P(Xn ≤ x) → P(X ≤ x) for all x.

Definition 2.3 (Convergence in probability). Xn
p→X if P((|Xn −X| ≥ ϵ)) → 0 for all ϵ > 0.

Definition 2.4 (Almost surely convergence). Xn
a.s.→ X if except on a null set A, Xn → X, that is,

limn→∞ Xn = X. And hence P(limn→∞ Xn = X) = 1
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Definition 2.5 (σ-field generated by X). Let X be a random variable defined on a probability
space (Ω,F ,P). We call σ(X) the σ-field generated by X, and we have

σ(X) =
{
X−1(B) : B ∈ B

}
where X−1(B) = {ω,X(ω) ∈ B} and B is the Borel set on R.

Definition 2.6 (Conditional probability). We have P(A|B) = P(A,B)
P(B) if P(B) ̸= 0.

Definition 2.7 (Naive conditional expectation). We have E (X|B) = E(XIB)
P(B) .

Definition 2.8 (Conditional density). Let g(x, y) be the joint density function for X and Y . Then
we have Y

∫
R g(x, y) dx ≡ gY (y). We also have

gX|Y=y =
g(x, y)

gY (y)

which defines the conditional density given Y = y.
Finally, we define E (X|Y = y) =

∫
R xgX|Y=y(x) dx.

Definition 2.9 (Conditional expectation). Let (Ω,F ,P) be a probability space. Let A be a sub
σ-field of F . Let X be a random variable such that E(|X|) < ∞. We define E (X|A) to be a random
variable Z such that

(i) Z is A-measurable,
(ii) E(XIA) = E(ZIA) for all A ∈ A.

Proposition 2.10 (Properties of the conditional expectation). Consider Z = E(X|Y ) = E(X|σ(Y ))

• If T is σ(Y )-measurable, then E(XT |Y ) = TE(X|Y ) a.s.
• If T is independent of Y , then E(T |Y ) = E(T ).
• E(X) = E(E(X|T ))

3. Lecture 3 - Tuesday 8 March

Definition 3.1 (Martingale). Let {Xt, t ≥ 0} be a right-continuous with left-hand limits.

lim
t↑t0

Xt exists

Let {Ft, t ≥ 0} be a filtration.
Then X is called a martingale with respect to Ft if

(i) X is adapted to Ft, i.e. Xt is Ft-measurable
(ii) E(|X|) < ∞, t ≥ 0

(iii) E(Xt|Fs) = Xs a.s.

Example 3.2. Let Xn be IID with E(Xn) = 0. Then {Sk, k ≥ 0}, where Sk =
∑k

i=0 Xi, is a
martingale.
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Example 3.3. An independent increment process {Xt, t ≥ 0} with E(Xt) = 0 and E(|Xt|) ≤ ∞ is
a martingale with respect to Ft = σ{Xs, 0 ≤ s ≤ t}

Definition 3.4 (Gaussian process). Let {Xt, t ≥ 0} be a stochastic process. If the finite dimensional
distributions are multivariate normal, that is,

(Xt1 , . . . , Xtm) ≡ N(µ,Σ)

for all t1, . . . , tm, then we call Xt a Gaussian process

Definition 3.5 (Markov process). A continuous time process X is a Markov process if for all t,
each A ∈ σ(Xs, s > t) and B ∈ σ(Xs, s < t), we have

P(A|Xt, B) = P(A|Xt)

Definition 3.6 (Diffusion process). Consider the stochastic differential equation

dXt = µ(t, x)dt+ σ(t, x)dBt

A diffusion process is path-continuous, strong Markov process such that

lim
h→0

h−1E(Xt+h −Xt|Xt = x) = µ(t, x)

lim
h→0

h−1E([Xt+h −Xt − hµ(t,X)]2|Xt = x) = σ2(t, x)

Definition 3.7 (Path-continuous). A process is path-continuous if limt→t0 Xt = Xt0 .

Definition 3.8 (Lévy process). Let {Xt, t ≥ 0 be a stochastic process. We call X a Lévy process

(i) X0 = 0 a.s.
(ii) It has stationary and independent increments
(iii) X is stochastically continuous, that is, for all s, t, ϵ > 0, we have

lim
s→t

P(|Xs −Xt| ≥ ϵ) = 0.

Equivalently, Xs
p→Xt if s → t.

Example 3.9 (Poisson process). Let (N(t), t ≥ 0) be a stochastic process. We call N(t) a Poisson
process if the following all hold:

(i) N(0) = 0

(ii) N has independent increments
(iii) For all s, t ≥ 0,

P(N(t+ s)−N(s) = n) =
e−λt(λt)n

n!
n = 0, 1, 2, . . .
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The Poisson process is stochastically continuous - that is,

P(|N(t)−N(s)| ≥ ϵ) = P(|N(t− s)−N(0)| ≥ ϵ)

= 1− P(|N(t− s)| < α)

= 1− P(|N(t− s)| = 0)

= 1− e−λ(t−s) → 0 as t → s

The Poisson process is not path-continuous, that is

P(lim
t→s

|N(t)−N(s)| = 0) ̸= 1

because
P(∪|t−s|≥ϵ|N(t)−N(s)| > δ) ≥ P(|N(s+ 1)−N(s)| ≥ δ) > 0

4. Lecture 4 - Thursday 10 March

Definition 4.1 (Self-similar process). For any t1, t2, . . . , tn ≥ 0, for any c > 0, there exists an H

such that
(Xct1, Xct2 , . . . , Xctn)

d
=(cHXt1, c

HXt2 , . . . , c
HXtn).

We call H the Hurst index.

Example 4.2 (Fractional process).

(1−B)dXt = ϵt, ϵt martingale difference

BXt = Xt−1, 0 < d < 1

Definition 4.3 (Brownian motion). Let {Bt, t ≥ 0} be a stochastic process. We call Bt a Brow-
nian motion if the following hold:

(i) B0 = 0 a.s.
(ii) {Bt} has stationary, independent increments.
(iii) For any t > 0, Bt ≡ N(0, t)

(iv) The path t 7→ Bt is continuous almost surely, i.e.

P( lim
t→t0

Bt = Bt0) = 1

Definition 4.4 (Alternative formulations of Brownian motion). A process {Bt, t ≥ 0} is a Brownian
motion if and only if

• {Bt, t ≥ 0} is a Gaussian process
• E(Bt) = 0,E(BsBt) = min(s, t)
• The process {Bt} is path-continuous
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Proof. (⇒) For all t1, . . . , tm, we have

(Btm −Btm−1 , . . . , Bt2 −Bt1) ≡ N(0,Σ)

as Bt has stationary, independent increments. Hence, (Bt1 , Bt2,, . . . , Btn) is normally distributed.
Thus Bt is a Gaussian process. We can also show that E(Bt) = 0 and E(BsBt) = min(t, s).

(⇐) TO PROVE �

Corollary. Let Bt be a Brownian motion. The so are the following:

• {Bt+t0 −Bt0 , t ≥ 0}
• {−Bt, t ≥ 0}
• {cBt/c2 , t ≥ 0, c ̸= 0}
• {tB1/t, t ≥ 0}

Proof. Here, we prove that {Xt} = {tB1/t} is a Brownian motion. Consider
∑n

αiXti . Then
by a telescoping argument, we know that the process is Gaussian (can be written as a sum of
Xt1 , Xt2 −Xt1 , etc). We can also easily show that E(Xt) = 0 and E(XtXs) = min(s, t) as required.

We now show that limt→0 Xt = 0 a.s. Fix ϵ ≥ 0. We must show

P

 ∞∩
n=1

∞∪
m=1

∩
0<t< 1

m

{|Xt| ≤
1

n
}

 = 1

However, as |Xt| has the same distribution as |Bt| (as they are both Gaussian with same mean and
covariance), we have that this is equivalent to

P

 ∞∩
n=1

∞∪
m=1

∩
0<t< 1

m

{|Bt| ≤
1

n
}


which is clearly one.

�

5. Lecture 5 - Tuesday 15 March

Theorem 5.1 (Properties of the Brownian motion). We have

P(Bt ≤ x |Bt0 = x0, . . . , Btn = xn) = P(Bt ≤ x|Bs = xs) = Φ(
x− xs√
t− s

)

Theorem 5.2. The joint density of (Bt1 , . . . , Btn is given by

g(x1, . . . , xn) =
n∏

j=1

f(xtj − xtj−1 , tj − t1)

where f(x, t) = 1√
2πt

e−
x2

2t
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Theorem 5.3 (Density and distribution of Brownian bridge). Let t1 < t < t2. Then

g(Bt|Bt1 = a,Bt2 = b) ≡ N

(
a+

(b− a)(t− t1)

t2 − t1
,
(t2 − t)(t− t1)

t2 − t1

)
.

The density of Bt|Bt1 = a,Bt2 = b is given as
gt1,t,t2(a, b, t)

gt1,t2(a, b)

Theorem 5.4 ( Joint distribution of Bt and Bs). We have

P(Bs ≤ x,Bt ≤ y) =

P(Bs ≤ x,Bt −Bs ≤ y −Bs)

=

∫ x

−∞

∫ y−z

−∞

1√
2πs

e−
x2
1

2s
1√

2π(t− s)
e−

−z22
2(t−s) dz1 dz2

=

∫ x

−∞

∫ y

−∞

1√
2πs

e−
x2
1

2s

5.1. Properties of paths of Brownian motion.

Definition 5.5 (Variation). Let g be a real function. Then the variation of g over an interval [a, b]
is defined as

V ([a.b]) = lim
∆→0

n∑
j=1

|g(tj)− g(tj−1)|

where ∆ is the size of the partition a = t0, . . . , tn = b of [a, b].

Definition 5.6 (Quadratic variation). The quadratic variation of a function g over an interval [a, b]
is defined by

[g, g] = lim
∆→0

n∑
j=1

|g(tj)− g(tj−1)|2

Theorem 5.7 (Non-differentiability of Brownian motion). Paths of Brownian motion are contin-
uous almost everywhere, by definition. Consider now, the differentiability of Bt. We claim that a
Brownian motion is non-differentiable almost surely, that is,

lim
t→s

|Bt −Bs|
|t− s|

= ∞ a.s.

We claim that

(i) Brownian motion is not differentiable almost surely for any t ≥ 0.
(ii) Brownian motion has infinite variation on any interval [a, b], that is,

VB([a, b]) = lim
∆→0

n∑
j=1

|B(tj)−B(tj−1)| = ∞ a.s.
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(iii) Brownian motion has quadratic variation t on [0, t], that is

[B,B]([0, t]) = lim
∆→0

n∑
j=1

|B(tj)−B(tj−1)|2 = t a.s.

Proof. We know that (Bct1 , . . . , Bctn)
d
=(cHBt1 , . . . , c

HBtn). This is true as Bct ≡ N(0, ct) =

c1/2N(0, t) as required.
Now suppose Xt is H-self-similar with stationary increments for some 0 < H < 1 with X0 = 0.

Then, for any fixed t0, we have
lim
t→t0

|Xt −Xt0 |
t− t0

= ∞ a.s.

Consider
P(lim sup

t→t0

|Xt −Xt0 |
t− t0

≥ M)

which by stationary increments, is equal to

P(lim sup
t→t0

|Xt|
t

≥ M) = lim
n→∞

P(
∪
k≥n

|Btn −Bt0

|tn − t0|
≥ M)

> lim
n→∞

P(
|Btn −Bt0

|tn − t0|
≥ M)

= lim
n→∞

P(|N(0, 1)| ≥ M · (tn − t0)
1/2)

and as the RHS goes to zero, we have

P(|N(0, 1)| ≥ M · (tn − t0)
1/2) → 1

as required. �

Now, Assume VB([0, t]) < ∞ almost surely. Consider Qn =
∑n

j=1 |Btj −Btj−1 |2. Then we have

Qn ≤ max
0≤j≤n

|Btj −Btj−1 | ·
n∑

j=1

|Btj −Btj−1 |

Let ∆ → 0. Then

lim
∆→0

Qn ≤ lim
∆→0

max
0≤j≤n

|Btj −Btj−1 | ·
n∑

j=1

|Btj −Btj−1 |

≤ lim
∆→0

max
0≤j≤n

|Btj −Btj−1 | · VB([0, t])

≤ 0 · VB([0, t]) = 0

because Bs is uniformly continuous on [0, t]. This is a contradiction to VB([0, t]) < ∞.
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Proof. We now show that E((Qn − t)2) → 0 as n → ∞. In fact, we have

E(Qn) =
n∑

i=1

E(Btj −Btj−1)
2

=

n∑
j=1

(tj − tj−1) = t

We now show L2 convergence. We have

E(Qn − t)2 = E((Qn − E(Qn))
2)

= E(
n∑

j=1

Yj where Yj = |Btj −Btj−1
|2 − E(|Btj −Btj−1

|2)

=

n∑
j=1

E(Y 2
j ))

≤
n∑

j=1

|tj − tj−1|2 · E|N(0, 1)|4

≤ C ·∆ · t → 0

as ∆ → 0. Thus we have convergence in L2. �

6. Lecture 6 - Thursday 17 March

Theorem 6.1 (Martingales related to Brownian motion). Let Bt, t ≥ 0 be a Brownian motion.
Then the following are martingales with respect to Ft = σ(Bs, 0 ≤ s ≤ t).
(1) Bt, t ≥ 0.
(2) B2

t − t, t ≥ 0.
(3) For any u, euBt−u2t

2

Proof. (1) is simple.
(2). We know that E(|B2

t |) is finite for any t. We can also easily show E(B2
t − t | Fs) = B2

s − s

a.s. �

Theorem 6.2. Let Xt be a martingale satisfying X2
t − t is also a martingale. Then Xt is a

Brownian motion.

Definition 6.3 (Hitting time). Let Tα = inf{t≥0,Bt=α}

(1) If α = 0, T0 = 0.
(2) If α > 0, then

P(Tα ≤ t) = 2P(Bt ≥ α) =
2√
2πt

∫ ∞

a

e−
x2

2t dx

We clearly have Tα > t ⇐⇒ sup0≤s≤t < α
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7. Lecture 7 - Tuesday 22 March

Theorem 7.1 (Arcsine law). Let Bt be a Brownian motion. Then

P(Bt = 0, for at least once, t ∈ [a, b]) =
2

π
arcos

√
a

b

Example 7.2. Processes derived from Brownian motion
(1) Brownian bridge

Xt = Bt − tB1 t ∈ [0, 1]

Consider X ≡ F (x), with X1, . . . Xn data. Our empirical distribution

Fn(x) =
1

n

n∑
i=1

1{Xj≤X

We can then prove that
n
√
Fn(x)− F (x) → Xt t ∈ (0, 1)

(2) Diffusion process
Xt = µt+ σBt

This is a Gaussian process with E(Xt) = µt, Cov(Xt, Xs) = σ2 min(s, t).
(3) Geometric Brownian motion

Xt = X0e
µt+σBt

This is not a Gaussian process.
(4) Higher dimensional Brownian motion

Bt = (B1
t , . . . , B

n
t )

where the Bi are independent Brownian motions, then

7.1. Construction of Brownian motion. Define a stochastic process

B̂n
t =

S[nt] − E(S[nt])√
n

With

B̃n
t =

B̂n
t if t = i

n

0 otherwise
Then we can prove that

B̃n
t ⇒ Bt on [0,1]

Definition 7.3 (Stochastic integral). We now turn to defining expressions of the form∫ A

0

Xt dYt
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with Xt, Yt stochastic processes.

Definition 7.4 (
∫ t

0
f(Bs) ds). We have ∫ t

0

f(t) dt

exists if f is bonded and continuous, except on a set of Lebesgue measure zero. Thus, we can set∫ t

0

f(t) dt = lim
∆→0

n∑
j=1

f(Byj )(tj − tj−1)

if f(x) is bounded.
We now seek to find

∫ 1

0
Bs ds. Consider Qn =

∑n
j=1 Byj (tj − tj−1). As the sum of normal

variables, we know that Qn ≡ N(µn, σ
2
n).

Since
∫ 1

0
Bs ds is normally distributed with mean 0, we have

E(X2) = E
∫ 1

0

Bs dx

∫ 1

0

Bt dt

=

∫ 1

0

E(BsBt) ds dt

=

∫ 1

0

min(s, t) ds dt

= 1/3

8. Lecture 8 - Thursday 24 March

∫ 1

0

f(Bs) ds = lim
∆→0

n∑
j=1

f(Byj )(tj+1 − tj)

Recall ∫ 1

0

Bs ds ∼ N(0,
1

3
) = lim

∆→0

n∑
i=1

Byj (tj+1 − tj)

Consider I =
∫
Xs dYs. We have the following:

Theorem 8.1. I exists if

(1) The functions f, g are not discontinuous at the same point x.
(2) f is continuous and g has bounded variation or,

(2)’ f has finite p-variation and g has finite q-variation, where

1/p+ 1/q = 1
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For any p, we define p-variation by

lim
∆→0

n∑
j=1

|f(tj)− f(tj−1)|p

Theorem 8.2. If J =
∫ 1

0
f(t) dg(t) exists for any continuous f , then g must have finite variation.

Theorem 8.3. Bs has bounded p variation for any p ≥ 2 and unbounded q-variation for any q < 2.

Proof. We can write (for p ≥ 2), p = 2 + (p− 2). Then we have

∆t = lim
∆→0

max |Btj −Btj−1 |p−2
n∑

j=1

|Btj −Btj−1 |2

and hence ∆t exists. �

Corollary. Thus
∫ 1

0
dBt is well defined if f has finite variation (as setting q = 1, p ≥ 2 gives

1/p+ 1/q > 1).

Consider
∫ 1

0
Bs dBs - is this an R-S integral? Consider

∆1n =

∞∑
j=1

Btj (Btj+1 −Btj ),∆2n =

∞∑
j=1

Btj+1(Btj+1 −Btj )

We have that

∆2n −∆1n =
n∑

j=1

(Btj+1 −Btj )
2 → 1

and
∆1n +∆2n =

n∑
j=1

B2
tj+1

−B2
tj ) = B2

1 .

Thus we know

∆2n → 1

2
(B2

1 + 1)

∆1n → 1

2
(B2

1 − 1)

Definition 8.4 (Itô integral). The Itô integral is defined by evaluating f(Btj ), the left-hand end-
point at each partition interval [tj , tj+1)

9. Lecture 9 - Tuesday 29 March

Definition 9.1 (Itô integral). Consider
∫ 1

0
f(s) dBs. Where f(s) is a real function, Bs a Brownian

motion. We define the integral in two steps.
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(1) If f(s) is a step function, define

I(f) =

∫ 1

0

f(s) dBs =
m∑
j=1

∫ tj+1

tj

f(s) dBs

=
m∑
j=1

cj(Btj+1 −Btj )

(2) If f(s) ∈ L2([0, 1]), then let fn be a sequence in L2([0, 1]) such that fn → f in L2([0, 1]).
Then define I(f) to be the limitation in such situations such that

E(I(fn)− I(f))2 → 0

in L2([0, 1]) or Let I(f) = limn→0 I(fn) in probability.

Remark. If f(x), g(x) are given step functions then αI(f) + βI(g) = I(αf + βg).

Remark. If f(x) is a step function, then I(f) ∼ N(0,
∫ 1

0
f2(s) ds)

Proof.

I(f) =

m∑
j=1

cj(Btj+1 −Btj ) ∼ N(0, σ2)

where σ2 =
∑m

j=1 c
2
j (tj+1 − tj). �

Theorem 9.2. I(f) is well defined (independent of the choice of fn.)

Proof. Let fn, gn → f in L2([0, 1]). We then need to only compute

∆n,m = E(I(fn)− I(gm))2 → 0

as m,n → ∞.
In fact,

∆n,m = E(I(fn − gm))2 =

∫ 1

0

(fn − gm)2 dx

≤ 2

∫ 1

0

(fn − f)2 dx+ 2

∫ 1

0

(gm − f)2 dx

→ 0

as n,m → ∞. �
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Remark. If f is continuous bounded variation, then∫ 1

0

f(s) dBs = (R.S.)

∫
)01f(s) dBs

= lim
δ→0

n∑
j=1

f(tj)B(tj+1 −Btj )

Proof. Case 1).

αI(f) + βI(g) = lim
n→∞

[αI(fn) + βI(gn) = lim
n→∞

[I(αfn + βgn)] = I(αf + βg)

and thus αfn + βgn → αf + βg ∈ L2([0, 1]). �

Case 2). If I(f) = limδ→0 I(fn) in probability. Then

I(fn) ∼ N(0, σ2
n)

∼ N(0,

∫ 1

0

f2
n(s) ds)

→ N(0,

∫ 1

0

f2(s) ds)

if σ2
n →

∫ 1

0
f2(x) dx. In fact, as∫ 1

0

f2
n dx =

∫ 1

0

(fn − f + f)2 dx

=

∫ 1

0

f2 dx+

∫ 1

0

(fn − f)2 dx+

∫ 1

0

(fn − f)f dx

→
∫ 1

0

f2 dx

as other terms tend to zero by L2 convergence and Hölder’s inequality.

Remark. (R.S.)
∫ 1

0
f(s) dBs exists if f is of bounded variation.

Remark. If f is continuous then
∫ 1

0
f2 dx < ∞ and

fn(t) =
n∑

j=1

f(tj)I[tj ,tj+1) → f(t) in L2([0, 1])

Thus,

I(f) = lim
δ→0

I(fn)

= lim
δ→0

m∑
j=1

f(tj)(Btj+1 −Btj )
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We have to prove ∫ 1

0

(fn − f)2 dx → 0

if f is continuous.

10. Lecture 10 - Thursday 31 March

We have
(Itô )

∫ 1

0

f(s) dBs ∼ N(0,

∫ 1

0

f(t)2 dt

if f is continuous, and of finite variation. In this case, we can write

(R.S.)
∫ 1

0

f(s) dBs = (Itô )

∫ 1

0

f(s) dBs = lim
∆→0

n∑
j=1

f(tj)(Btj+1 −Btj )

Example 10.1. We have∫ 1

0

(1− t) dBt = (Itô )

∫ 1

0

(1− t) dBt ∼ N(0,

∫ 1

0

(1− t)2 dt) = N(0,
1

3
)

and by integrating by parts, we have∫ 1

0

(1− t) dBt = (1− t)Bt|10 −
∫ 1

0

Bt d(1− t) = 0 +

∫ 1

0

Bt dt ∼ N(0,
1

3
)

Now consider
(Itô )

∫ 1

0

Xs dBs

where we now allow Xs to be a stochastic process.
Write Ft = σ(Bs, 0 ≤ s ≤ t). Let π be the collection of Xs such that

(1) Xs is adapted to Fs, that is, for any s, Xs is Fs measurable.
(2)

∫ 1

0
X2

s ds < ∞ almost surely (R.S)
Let π′ = {Xs |Xs ∈ π,

∫ 1

0
E(X2

s ) < ∞}. Then π′ ⊂ π. Let Xs = eB
2
s . Then

E(X2
s ) = E(eB

2
s ) =

 1√
1−4s

0 ≤ s < 1
4

∞ s ≥ 1
4

Definition 10.2 (Itô integral for stochastic integrands). We proceed in two steps.
(1) Let Xs =

∑n
j=1 ζi1[tj ,tj+1) where ζj is Ftj measurable. Then

I(X) =
n∑

j=1

ζj(Btj+1 −Btj ).

(2) If X ∈ π, there exists a sequence Xn ∈ π′ such that Xn are step process with∫
01

|Xn
s −Xs|2 ds → 0
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as n → ∞ in probability or in L2([0, 1]) if Xs ∈ π′.

Proof. We show only for Xs continuous, the general case can be found in Hu-Hsing Kuo (p.65). As
Xs is continuous, then it is in π. Then choose

Xn
s = X0 +

∑
j = 1nXtj1[tj ,tj+1)

Then Xs ∈ pi′ and
E(|Xn

s −Xs|2) → 0

for any s ∈ (0, 1).
We can also show that

E(|Xn
s −Xs|2) < ∞

and so by the dominated convergence theorem, we have

lim
n→∞

∫ 1

0

E(|Xn
s −Xs|2) ds = 0.

�

Finally if Xs ∈ π, the Itô integral
∫ 1

0
Xs dBs is defined as

I(X) = lim
δ→0

I(Xn)

in probability or in L2 if X ∈ π′.

11. Lecture 11 - Tuesday 5 March

Let I(X) =
∫ 1

0
Xs dBs in the Itô sense. We then require

(1) Xs is Fs = σ{Bt, 0 ≤ t ≤ s}-measurable
(2)

∫ 1

0
X2

s ds < ∞ almost surely.

Then I(X) = limn→∞ I(Xn) where Xn is a sequence of step functions converging to X in L2,
that is, ∫ 1

0

(Xn
s −Xs)

n ds → 0

We then show that this definition is independent of the sequence of step functions. For any Ys

step process, we have∫ 1

0

(Y n
s − Y m

s )2 dx ≤ 2

∫ 1

0

(Y m
s −Xs)

2 ds+ 2

∫ 1

0

(Xn
s −Xs)

2 dx → 0

Theorem 11.1 (Properties of the Itô integral).

(1) For any α, β ∈ R, X,Y ∈ π,

I(αX + βY ) = αI(X) + βI(Y )
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(2) For any Xs ∈ π′, we have

E(I(X)) = 0, E(I2(X)) =

∫ 1

0

E(X2
s ) ds

If X ′ ∈ π′, Ys ∈ π′, then

E(I(X)I(Y )) =

∫ 1

0

E(XsYs) ds

(3) If Xs continuous then

I(X) = lim
δ→0

n∑
j=1

Xtj (Btj+1 −Btj )

in probability.
(4) If X is continuous and of finite variation and

∫ 1

0
Bs dXs < ∞ then

(R.S.)

∫ 1

0

= (Itô )

∫ 1

0

Xs dBs = X1B1 −X0B0 −
∫ 1

0

Bs dXs

Proposition 11.2. We now show why we require

(1) Xs is Fs = σ{Bt, 0 ≤ t ≤ s}-measurable
(2)

∫ 1

0
X2

s ds < ∞ almost surely.

Proof. Motivation for (1)

Xs =

n∑
j=1

ζj1(tj ,tj+1)

I(X) =
∑
j=1

ζj(Btj+1 −Btj )

E(I(X)) =
n∑

j=1

E(ζj(Btj+1 −Btj ))

=
n∑

j=1

E(E(ζj(Btj+1 −Btj ) | Ftj ))

=
n∑

j=1

E(ζjE(Btj+1−Btj
| Ftj ))
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Motivation for (2)

E(I2(X)) = E(
n∑

j=1

ζj(Btj+1 −Btj ))
2

= 2
∑
i<j

E(E(ζiζj(Btj+1 −Btj )(Bti+1 −Bti)) | Fti) +
n∑

j=1

E(ζ2j (Btj+1 −Btj )
2)

=
n∑

j=1

E(ζ2j )(tj+1 − tj)

=

∫ 1

0

E(X2
t ) dt

We now show that there Xn
s ∈ π′. such that

∫ 1

0
E(Xn

s −Xs)
2 ds → 0. We have

E(I2(X)) = E(I(X))− I(Xn) + E(I(Xn
s ))

2

= E(I2(Xn)) + 2E(I(Xn)(I(X)− I(Xn))) + E(I(X)− I(Xn))2

By Cauchy-Swartz, the middle term tens do zero, and by definition, the third term tends to zero.
Thus we have

lim
n→∞

E(I2(Xn)) = E(I2(X))

Let Xn
s be step processes. We now show

E(Xn
s −Xs)

2 → 0 ⇒
∫ 1

0

E(Xn
s −Xs)

2 ds → 0

By definition, we have

I(X) = lim
n→∞

I(Xn) = lim
δ→0

n∑
j=1

Xtj (Btj+1 −Btj ).

and we proved the required result in lectures.
We now show that the (R.S.) integral exists if X is continuous and of finite variation, and∫ 1

0
Bs dXs < ∞, the our integration by parts formula holds.
We have

(R.S.)

∫ 1

0

Xs dBs = lim
δ→0

n∑
j=1

Xyj (Btj+1 −Btj )

= lim
δ→0

n∑
j=1

Xtj (Btj+1 −Btj )

which is our Itô integral by definition.
�
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Definition 11.3 (Itô process). Suppose Yt =
∫ t

0
Xs dBs, t ≥ 0 is well defined, for Xs ∈ π. Then

Yt is an Itô processes. To show a process Yt is an Itô process, we need to show that
∫ t

0
|Xs| ds)M∞

a.s. and
∫ t

0
|Xs|2 ds < ∞ a.s.

Theorem 11.4. We have that Yt is continuous (except on a null set), is of infinite variation, as
n∑

j=1

|Ytj+1 − Ytj | =
n∑

j=1

|
∫ tj+1

tj

Xs dBs|

≥
n∑

j=1

min
s

|Xs||Btj+1−Btj

≥ C
∑
j=1n

|Btj+1 −Btj |

12. Lecture 12 - Thursday 7 March

From before, consider the Itô process Yt =
∫ t

0
Xs dBs.

Lemma 12.1. E(
∫ t

s
XudBu | Fs) = 0.

Proof. Let Xu =
∑n

j=1 ζj1[tj ,tj+1). Then

E(
∫ t

s

Xu dBu | Fs) =

n∑
j=1

E(ζj(Btj+1 −Btj ) | Fs)

=
n∑

j=1

E(E(ζj(Btj+1 −Btj ) | Fs) | Ftj )

=
n∑

j=1

E(E(ζj(Btj+1 −Btj ) | Ftj ) | Fs)

= 0

where the third equality follows from the fact that (Ft) is an increasing sequence of σ-fields and
the final follows from the fact that Btj+1 −Btj is independent of Ftj . �

Definition 12.2 (Local martingale). A process Yt is a local martingale if there exists a sequence
of stopping times τn, n ≥ 1 such that Ymin(t,τ),Ft

is a martingale.

Proposition 12.3. We have the following.
(1) If Xs ∈ π′, that is,

∫ t

0
E(X2

s ) ds < ∞, then (Yt,Ft) is a martingale.
(2) If Xs ∈ π, that is

∫ t

0
X2

s ds < ∞ a.s., then (Yt,Ft) is a local martingale.
(3) For f(x) satisfying

∫ t

0
f2(z) dz < ∞., we have

Yt =

∫ t

0

f(s) dBs
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is a Gaussian process.

Proof. We have Yt is trivially Ft-measurable.
We have E(|Yt|) < ∞ a.s. as E(Y 2

t ) =
∫ t

0
E(X2

s ) ds < ∞ by assumption.
We have

E(Yt | Fs) = E(
∫ s

0

Xu dBu +

∫ t

s

Xu dBu | Fs)

= E(Ys | Fs) + E(
∫ t

s

Xu dBu | Fs)

= Ys

from the previous lemma.
Now assuming Xs ∈ π′, the exists an Xn

s a step process such that∫ t

0

E(Xn
u −Xu)

2 du → 0

as n → ∞.
Set Y n

t =
∫ t

0
Xn

u dBu. Then∫ t

s

Xu dBu = Yt − Ys

= Yt − Y n
t + Y n

t − Y n
s + Y N

s − Ys

Then for each n, we have

Z = E(
∫ t

s

Xu dBu) = E(Yt − Y n
t | Fs) + E(Y n

s − Ys | Fs)

We only need to prove E(|Z|2) → 0 which implies E(Z2) = 0 and thus Z = 0 almost surely. We
have

E(Z2) ≤ 2E(Yt − Y n
t )2 + 2E(Ys − Y n

s )2 → 0

by definition of Y n
t .

�

13. Lecture 13 - Tuesday 12 March

Theorem 13.1. Let f be continuous. Then

lim
δ→0

n∑
j=1

f(θj)(Btj+1 −Btj )
2 =

∫ t

0

f(Bs) ds
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Proof. Let

Qn =
n∑

j=1

|f(θj)− f(Btj )|Btj+1
−Btj |2

Note that
∑n

j=1 f(Btj )(Btj+1 −Btj )
2 →

∫ t

0
f(Bs) ds in probability.

It only needs to show that Qn → 0 in probability. We have

Qn ≤ max
1≤j≤n

|f(θj)− f(Btj )
n∑

j=1

|Btj+1 −Btj |2 → 0 · t = 0

in probability from the quadratic variance of the brownian motion �

Theorem 13.2. Let f be bounded on [0, 1]. Then

lim
δ→0

n∑
j=1

f(Xtj )(Btj+1 −Btj )
2 =

∫ t

0

f(Xs ds)

Proof. We only prove for cases where
∫ t

0
E(X2

s ) ds is finite. In this case, there exists Xn
s step process

such that ∫ t

0

E(Xn
s −Xs)

2 ds → 0

as n → ∞.
In fact, we can let Xn

s =
∑n

j=1 Xtj1[tj ,tj+1]. Let

Y n
t =

∫ t

0

Xn
s dBs

Then Y n
tj+1

− Y n
tj =

∫ tj+1

tj
Xn

s dBs.
Therefore,

n∑
j=1

(Ytj+1 − Ytj )
2 =

n∑
j=1

(Ytj+1 − Y n
tj + Z1j + Z2j)

where Z1j = Ytj+1 − Y n
tj+1

and Z2j = Ytj = Y n
tj . Continuing, we have

=
n∑

j=1

(Ytj+1 − Y n
tj )

2 + error

=
n∑

j=1

X2
tj (Btj+1 −Btj )

2 + error

→
∫ t

0

X2
s ds

if the error term goes to zero. We have

Rn ≤ 2
∑

Z2
1j + 2

∑
Z2
2j + 2

∑
|Z1j | · |Y n

tj+1
− Y n

tj |+ 2
∑

|Z2j | · |Y n
tj+1

− Y n
tj |+ 2

∑
|Z1j | · |Z2j |

≤ · · ·+ 2(
∑

Z2
1j)

1/2A1/2
n + 2(

∑
Z2
2j)

1/2A1/2
n + 2(

∑
Z2
1j)

1/2 · (
∑

Z2
2j)

1/2
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and as
∑

Zij
2 → 0 in probability, we have our result. �

Theorem 13.3 (Itô’s first formula). If f(x) is a twice-differentiable function then for any t,

f(Bt)− f(Bs) =

∫ t

s

f ′(Bu) dBu +
1

2

∫ t

s

f ′′(Bu) du

Proof. Let s = t1, . . . , tn = t. We have

f(Bt)− f(Bs) =
n∑

j=1

[
f(Btj+1)− f(Btj )

]
Applying Taylor’s expansion to f(Btj+1)− f(Btj ) we get

f(Btj+1)− f(Btj = f ′(Btj )(Btj+1 −Btj ) +
1

2
f ′′(θj)(Btj+1 −Btj )

2

and so

f(Bt)− f(Bs) = lim
δ→0

n∑
j=1

f ′(Btj )(Btj+1
−Btj ) + lim

δ→0

∑
j=1

1

2
f ′′(θj)(Btj+1

−Btj )
2

=

∫ t

s

f ′(Bu) dBu +
1

2

∫ t

s

f ′′(Bu) du

�

Example 13.4.

14. Lecture 14 - Thursday 14 March

Definition 14.1 (Covariation). The covariation of two stochastic processes Xt, Yt is defined as

[X,Y ](t) =
1

4
([X + Y,X + Y ](t)− [X − Y,X − Y ](t))

where [·, ·] is the quadratic variation previously defined.

Definition 14.2 (Stochastic differential equation). Let Xt be an Itô process. Then

Xt = Xa +

∫ t

a

µ(s) ds+

∫ b

a

σ(s) dBs

We write
dXt = µ(t) dt+ σ(t) dBs

By convention, we write dXt · dYt = d[X,Y ](t). In particular, (dYt)
2 = d[Y, Y ](t).

Theorem 14.3. Let Yt be path continuous, and let Xt have finite variation. Then

[X,Y ](t) = 0.
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Proof. We have

[X,Y ](t) =
1

4
([X + Y,X + Y ]− [X − Y,X − Y ])

= lim
δ→0

n∑
j=1

(Xtj+1 −Xtj )(Ytj+1 − Ytj )

≤ lim
δ→0

max |Ytj+1 − Ytj |
n∑

j=1

|Xtj+1 −Xtj |

→ 0

as Yt is path continuous and Xt has finite variation. �

Corollary. From this theorem, we then have

dBt · dt = 0, (dt)2 = 0, (dBt)
2 = dt

Corollary. For an Itô process Xt given above, we then have

d[X,X](t) = dXt · dXt = (µ(t)dt+ σ(t) dBt)
2
= σ2(t) dt

Corollary. If f(x) has a twice continuous derivative, then

[f(Bt), Bt](t) =

∫ t

0

f ′(Bs) ds

Proof. From Itô’s formula, we have

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt

Then from above, we have

d[f(Bt), Bt](t) = df(Bt) · dBt = f ′(Bt)dt

�

Theorem 14.4 (Itô’s lemma). By Taylor’s theorem, we have

df(t,Xt) =
∂f(t,Xt)

∂t
dt+

∂f(t, x)

∂x

∣∣∣∣
x=Xt

· dXt +
1

2

∂2f(t, x)

∂x2

∣∣∣∣
x=Xt

· (dXt)
2

+
1

2

∂2f(t, x)

∂x∂t

∣∣∣∣
x=Xt

· dXt · dt

=
∂f(t,Xt)

∂t
dt+

∂f(t, x)

∂x

∣∣∣∣
x=Xt

· (µ(t) dt+ σ(t) dBt) +
1

2

∂2f(t, x)

∂x2

∣∣∣∣
x=Xt

· σ2 dt

=

(
∂f

∂t
+

∂f

∂x
µ(t) +

1

2

∂2f

∂x2
σ2(t)

)
dt+

∂f

∂x
σ(t) dBt
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Example 14.5. Let f(Bt) = eBt . Then

df(Bt) = eBt dBt +
1

2
eBt dt

Theorem 14.6. Assume
∫ T

0
f2(t) dt < ∞. Let Xt =

∫ t

0
f(s) dBs − 1

2

∫ t

0
f2(s) ds. Then

Yt = eXt

is a martingale with respect to Ft = σ(Bs, 0 ≤ s ≤ t).

Proof. We have

dYt = eXt dXt +
1

2
eXt(dXt)

2

= eXt [f(t) dBt −
1

2
f2(s) dt] +

1

2
eXtf2 dt

= eXtf(t) dBt

and thus Yt =
∫ t

0
eXsf(s) dBs which is a martingale from previous work. �

15. Lecture 15 - Tuesday 19 March

Theorem 15.1 (Multivariate Itô’s formula). Let Bj(t) be a sequence of independent Brownian
motions. Consider the Itô processes Xi

t , with

dXi
t = bi(t) dt+

m∑
k=1

σki(t) dBk(t)

Suppose f(t, x1, . . . , xn) is a continuous function of its components and has continuous partial
derivatives ∂f

∂t ,
∂f
∂xi

, ∂f
∂2xi∂xj

. Then

df(t,X1
t , . . . , X

m
t ) =

∂f

∂t
dt+

m∑
i=1

∂f

∂xi
dXi

t +
1

2

∑
i,j=1

∂2f

∂xi∂xj
dXi

t dX
j
t

We have

dXi
t dX

j
t =

m∑
k,s=1

σkiσsj dBk(t) dBs(t)

=
n∑

k=1

σkiσkj dt+

as d[Bi, Bj ](t) = 0 when Bi, Bj are independent

Example 15.2. Let

dXt = µ1(t)dt+ σ1(t) dB1(t)

dYt = µ2(t)dt+ σ2(t) dB2(t)
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with B1, B2 independent. Then

d(Xt · Yt) = Yt dXt +Xt dYt + d[X,Y ](t)

and by independence, d[X,Y ](t) = dXt · dYt = 0.

Example 15.3. Let

dXt = µ1(t)dt+ σ1(t) dB1(t)

dYt = µ2(t)dt+ σ2(t) dB1(t).

Then

d(Xt · Yt) = Yt dXt +Xt dYt + σ1(t)σ2(t) dt.

In particular, if µ1 = µ2 = 0, then

Xt Yt =

∫ t

0

[σ1(s)Ys + σ2(s)Xs] dBs +

∫ t

0

σ1(s)σ2(s) dt

Thus, Zt = XtYt −
∫ t

0
σ1(s)σ2(s) dt is a martingale.

Theorem 15.4 (Tanaka’s formula). We have

|Bt − a| = |a|+
∫ t

0

sgn(Bs − a) dBs + L(t, a)

where
L(t, a) = lim

ϵ>0

1

2ϵ

∫ t

0

1|Bs−a|≤ϵ ds

Proof. Let

fϵ(x) =

|x− a| − ϵ
2 |x− a| > ϵ

1
2ϵ (x− a)2 |x− a| ≤ ϵ

Then we have

f ′
ϵ(x) =


1 x > a+ ϵ

1
ϵ (x− a) |x− a| ≤ ϵ

−1 x < a− ϵ

and

f ′′
ϵ (x) =

0 |x− a| > ϵ

1
ϵ |x− a| ≤ ϵ

Then by Itô’s formula, we have

fϵ(Bt) = fϵ(0) +

∫ t

0

f ′
ϵ(B − s) dBs +

1

2

∫ t

0

f ′′
ϵ (Bs) ds
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Obviously
lim
ϵ→0

fϵ(0) = |a|

and
lim
ϵ→0

1

2

∫ t

0

f ′′
ϵ (Bs) ds =

1

ϵ

∫ t

0

1|Bs−a|≤ϵ ds = L(t, a)

Note that∫ t

0

|f ′
ϵ(Bs)− sgn(Bs − a)|2 ds =

∫
|Bs−a≤ϵ

∣∣∣∣1ϵ (Bs − a)− sgn(Bs − a)

∣∣∣∣2 ds → 0a.s.

�

Theorem 15.5.
L(t, a) =

∫ t

0

δa(Bs) ds

Theorem 15.6. If f is integrable on R, then∫ ∞

−∞
L(t, s)f(s) ds =

∫ t

0

f(Bs) ds

16. Lecture 16 - Thursday 21 March

Definition 16.1 (Linear cointegration). Consider two non stationary time series Xt and Yt. If
there exist coefficients α and β such that

αXt + βYt = ut

with ut stationary, then we say that Xt and Yt are cointegrated.

Definition 16.2 (Nonlinear cointegration). If Yt − f(Xt) = ut is stationary, with f(·) a nonlinear
function.

17. Lecture 17 - Tuesday 3 May

17.1. Stochastic integrals for martingales. We now seek to define stochastic integrals with
respect to processes other than Brownian motion.

Example 17.1. Let Xt =
∫ t

0
Ys dBs, and thus dXs = Ys dBs. Then

Zt =

∫ t

0

Y ′
s dXs =

∫ t

0

Y ′
s · Ys dBs

Revus and Yov - Continuous Martingale and Brownian Motion

Definition 17.2 (Martingale). A martingale with respect
(1) Mt adapted to Ft.
(2) E(|Mt|) < ∞.
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(3) E(Mt | Fs) = Ms a.s.

A process is a submartingale if (3) is replace with E(Mt | Fs) ≥ Ms. A process is a supermartin-
gale if (3) is replaced with E(Mt | Fs) ≤ Ms.

Example 17.3. Let Nt be a poisson process with intensity λ. Then

(1) Nt is a submartingale with respect to the natural filtration.
(2) Nt − λt is a martingale with respect to the natural filtration.

Theorem 17.4. If
∫ t

0
E(H2(s)) ds < ∞ and H(s) is adapted to Fs = σ(Bt, t ≤ s), then

Yt =

∫ t

0

H(s) dBs, t ≥ 0

is a continuous, square integrable martingale - that is, E(Y 2
t < ∞).

Theorem 17.5. Let Mt be a continuous, square integrable martingale with respect to Ft. Then
there exists an adapted process H(s) such that

∫ t

0
E(H2(s)) ds < ∞ and

Mt = M0 +

∫ t

0

H(s) dBs

where Bt is a Brownian motion with respect to Ft.

Theorem 17.6. Mt, t ≥ 0 is a Brownian motion if and only if it is a local continuous martingale
with [M,M ](t) = t, t ≥ 0 under some probability measure Q.

Proof. A local continuous martingale is of the form Mt = M0 +
∫ t

0
H(s) dBs. Then we have

[M,M ](t) =

∫ t

0

H2(s) ds = t ⇒ H(s) = 1a.s. ⇒ Mt = Bt.

�

Theorem 17.7. Let Mt, t ≥ 0 e a continuous local martingale such that [M,M ](t) ↑ ∞. Let

τt = inf{s : [M,M ](s) ≥ t}.

Then M(τt) is a Brownian motion. Moreover, M(t) = B([M,M ](t)), t ≥ 0.
This is an application of the change of time method.

Example 17.8. Bt is a Brownian motion - and then Yt = B2
t − t is a martingale. We have

dYt = H(s) dBs = 2Bs dBs.

Thus,

B2
t − t = 2

∫ t

0

Bs dBs.
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Definition 17.9 (Predictability of a stochastic process). A stochastic process Xt, t ≥ 0 is said to
be predictable with respect to Ft if Xt ∈ Ft− for all t ≥ 0, where

Ft− =
∞∩
h≥0

Ft+h, Ft− = σ

( ∞∩
h>0

Ft−h

)
.

Example 17.10. Let gt be a step process, with

gt =

n∑
i=1

ζj1[tj ,tj+1)(t)

Then gt is not predictable.
Let gt be a step process, with

gt =
n∑

i=1

ζj1(tj ,tj+1](t)

Then gt is predictable.

Example 17.11. Let Nt be a Poisson process. Then Nt− is predictable, but Nt is not predictable.

From now on, assume Mt, t ≥ 0 is right continuous, square integrable martingale with left hand
limits.

Lemma 17.12. M2
t is a submartingale.

Proof.

E(M2
t | Fs) = E(M2

s + 2(Mt −Ms) + (Mt −Ms)
2 | Fs)

= M2
s + E((Mt −Ms)

2 | Fs)

≥ M2
s

�

Theorem 17.13 (Doob-Myer decomposition). By Doob-Myer we can write

M2
t = Lt +At

where Lt is a martingale, and At is a predictable process, right continuous, and increasing, such
that A0 = 0,E(At) < ∞, t ≥ 0.

At is called the compensator of M2
t , and is denoted by ⟨M,M⟩(t).

Example 17.14. Consider B2
t = B2

t − t+ t. Then

⟨B,B⟩(t) = t = [B,B](t)

Theorem 17.15. If Mt is continuous then

[M,M ](t) = ⟨M,M⟩(t).
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Example 17.16. Let Nt be a Poisson process. Then we know Ñt = Nt − λt is a martingale. We
may prove

Ñ2
t − λt

is a martingale, that is, ⟨Ñ , Ñ⟩(t) = λt. However,

[Ñ , Ñ ](t) = λt+ Ñt ̸= ⟨Ñ , Ñ⟩(t)

Example 17.17. Xt =
∫ t

0
f(s) dBs is a continuous martingale. Thus,

[X,X](t) =

∫ t

0

f2(s) ds = ⟨X,X⟩(t)

Theorem 17.18. If Mt is a continuous, square integrable martingale, then

M2
t − [M,M ](t)

is a martingale, and so
[M,M ](t) = ⟨M,M⟩(t) + martingale

which implies
E[M,M ](t) = E⟨M,M⟩(t) = EM2

t

We now turn to defining integrals such as∫ t

0

Xs dMs

where Ms is a martingale.

Definition 17.19. Let L2
pred be the space of all predictable stochastic process Xs satisfying the

condition ∫ t

0

X2
s d⟨M,M⟩(s) < ∞.

Then the integral
∫ t

0
Xs dMs is defined as before in two steps.

(1) If Xs ∈ L2
pred and Xs =

∑n
j=1 ζj1[tj ,tj+1). Define

I(X) =
n∑

j=1

ζj(Mtj+1 −Mtj ).

(2) For all Xs ∈ L2
pred, there exists a sequence of step process Xn

s such that Xn
s → Xs in L2. Define

I(x) to be the limit in such situations such that

E(I(X)− I(Xn))2 → 0.

Proposition 17.20. Properties of the integral.
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(1) If Ms is a (local) martingale, then ∫ t

0

f(s) dMs

is a (local) martingale.

Proof.

E(
∫ t

s

f(u) dMu | Fs) = 0

�

(2) If Mt is a square integrable martingale and satisfies

E(
∫ t

0

f2(s) d⟨M,M⟩(t)) < ∞

then
I(f) =

∫ t

0

f(s) dMs

is square integrable with E(I(f)) = 0, and E(I2(f)) =
∫ t

0
f2(s) d⟨M,M⟩(s).

In particular, if M(s) =
∫ s

0
σ(u) dBu, then∫ t

0

Xs dMs =

∫ t

0

Xsσ(s) dBs

provided
∫ t

0
X2

sσ
2(s) ds < ∞ and

∫ t

0
σ2(s) ds

(3) If Xt =
∫ t

0
f(x) dMs and Ms is a continuous, square integrable martingale, then

[X,X](t) =

∫ t

0

f2(s) d[M,M ](s) = ⟨X,X⟩(t)

18. Lecture 18 - Tudsay 10 May

Let Mt be a martingale. Then M2
t − [M,M ](t) is a martingale, and

M2
t = martingale + ⟨M,M⟩(t)

Recall that if Mt is a continuous square integrable martingale, then

⟨M,M⟩(t) = [M,M ](t)

Generally speaking,
[M,M ](t) = ⟨M,M⟩(t) + martingale

Theorem 18.1. If
∈t
0 f2(s) d⟨M,M⟩(s) < ∞
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a.s. then
Yt =

∫ t

0

f(s) dMs

is well defined, and

EY 2
t =

∫ t

0

f2(s) d⟨M,M⟩(t)

=

∫ t

0

f2(s) d[M,M ](t) if Mt-continuous

and
⟨Y, Y ⟩(t) = [Y, Y ](t) =

∫ t

0

f2(s) d[M,M ](s).

Proof.

dYt = f(t) dMt

d[Y, Y ](t) = dYtdYt

= f2(t) dMtdMt

= f2(t) d[M,M ](t)

[Y, Y ](t) =

∫ t

0

f2(s) d[M,M ](s) = ⟨Y, Y ⟩(t)

By Itô’s formula, we also have

Y 2
t = Y 2

0 + 2

∫ t

0

Ys dYs +

∫ t

0

1 · [Y, Y ](t)

= 2

∫ t

0

Ys · f(s) dMs + ⟨Y, Y ⟩(t)

dY 2
t = 2Ytf(t) dMt + d⟨Y, Y ⟩(t)

Hence
⟨Y, Y ⟩(t) = Y 2

t − 2

∫ t

0

Ysf(s) dMs = [Y, Y ](t)

since
∫ t

0
Ysf(s) dMs is a martingale. �

18.1. Itô’s integration for continuous semimartingales.

Definition 18.2. Let (Xt,Ft) be a continuous semimartingale. Then

Xt = Mt +At

where Mt is a martingale and At is a continuous adapted process of bounded variation (limδ→0

∑n
j=1 |Atj+1

−
Atj | < ∞).
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Definition 18.3 (Integrals for semimartingales).∫ t

0

cs dXs =

∫ t

0

cs dMs +

∫ t

0

cs dAs

and since At has bounded variation, the second integral is defined in the Riemann-Stiljes (R.S.)
sense.

Theorem 18.4 (Itô’s formula). Let Xt be a continuous semimartingale. Let f(x) have twice
continuous derivatives. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) d[X,X](s)

Proof. Partition the interval [0, t], and use a Taylor expansion to express f(x) = f(x0)+f ′(x0)(x−
x0) +

1
2f

′′(x0)(x− x0)
2. �

18.2. Stochastic differential equations. Consider the equation

dXt = σ(t,Xt) dBt = µ(t,Xt) dt

We seek to solve for a function f(t, x) such that

Xt = f(t, Bt).

Such an f(t, Bt) is a solution to the stochastic differential equation.

Definition 18.5 (Strong solution). Xt = X0 +
∫ t

0
σ(s,Xs) dBs +

∫ t

0
µ(s,Bs) ds

19. Lecture 19 - Thursday 12 May

Theorem 19.1. Let
dXt = a(t,Xt) dt+ b(t,Xt) dBt

Assume EX0 < ∞. X0 is independent of Bs and there exists a constant c > 0 such that

(1) |a(t, x)|+ |b(t, x)| ≤ C(1 + |x|).
(2) a(t, x), b(t, x) satisfy the Lipschitz condition in x, i.e.

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C|x− y|

for all t ∈ (0, T ).

Then there exists a unique (strong) solution.

Example 19.2. Let
dXt = c1Xt dt+ c2Xt dBt,

with c1, c2 constants.
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Example 19.3. Let

dXt = [c1(t)Xt + c2(t)] dt+ [σ1(t)Xt + σ2(t)] dBt

Let a(t, x) = c1(t)x+ c2(t)x, b(t, x) = σ1(t)x+ σ2(t). Just follow Kuo p. 233.
Let

Ht = e−Yt , Yt =

∫ t

0

σ1(s) ds+

∫ t

0

c1(s) dBs −
1

2

∫ t

0

c21(s) ds

Then by the Itô product formula, we have

d(HtXt) = Ht (dXt − σ1(t)Xt dt− c1(t)Xt dBt − c2(t)c1(t) dt)

Then by definition of the Xt, we obtain

d(HtXt) = Ht (c2(t) dBt + σ2(t) dt− c1(t)c2(t) dt)

which can be integrated to yield

HtXt = C +

∫ t

0

Hsc2(s) dBs +

∫ t

0

Hs(σ2(s)− c1(t)c2(t)) ds

Dividing both sides by Ht we obtain our solution Xt.

Theorem 19.4. The solution to the linear stochastic differential equation

dXt = [c1(t)Xt + c2(t)] dt+ [σ1(t)Xt + σ2(t)] dBt

is given by

Xt = Ce−Yt +

∫ t

0

eYt−Ysc2(t) dBs +

∫ t

0

eYt−Ys(σ2(s)− c1(t)c2(t)) dt

where Yt =
∫ t

0
c1(s) dBs +

∫ t

0

(
σ1(s)− 1

2c
2
1(s)

)
ds

20. Lecture 20 - Tuesday 17 May

20.1. Numerical methods for stochastic differential equations.

Theorem 20.1 (Euler’s method). For the stochastic differential equation

dXt = a(Xt) dt+ b(Xt) dBt,

we simulate Xt according to

Xtj = Xtj−1 + a(Xtj−1)∆tj + b(Xtj−1)∆Btj

Theorem 20.2 (Milstein scheme). For the stochastic differential equation

dXt = a(Xt) dt+ b(Xt) dBt,
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we simulate Xt according to

Xtj = Xtj−1 + a(Xtj−1)∆tj + b(Xtj−1)∆Btj +
1

2
b′(Xtj−1)(∆B2

tj −∆tj)

20.2. Applications to mathematical finance.

20.3. Martingale method. Consider a market with risky security St and riskless security βt.

Definition 20.3 (Contingent claim). A random variable CT : Ω → R, FT -measurable is called a
contingent claim. If CT is σ(ST )-measurable it is path-independent.

Definition 20.4 (Strategy). Let at represent number of units of St, and bt represent number of
units of βt. If at, bt are Ft-adapted, then they are strategies in our market model. Our strategy
value Vt at time t is

Vt = atXt + btβt

Definition 20.5 (Self-financing strategy). A strategy (at, bt) is self financing if

dVt = at dSt + bt dβt

The intuition is that we make one investment at t = 0, and after that only rebalance between St

and βt.

Definition 20.6 (Admissible strategy). (at, bt) is an admissible strategy if it is self financing
and Vt ≥ 0 for all 0 ≤ t ≤ T .

Definition 20.7 (Arbitrage). An arbitrage is an admissible strategy such that V0 = 0, VT ≥ 0 and
P(VT > 0) > 0. Alternatively, an arbitrage is a trading strategy with V0 = 0, and E(VT ) > 0.

Definition 20.8 (Attainable claim). A contingent claim CT is said to be attainable if there exists
an admissible strategy (at, bt) such that VT = CT . In this case, the portfolio is said to replicate the
claim. By the law of one price, Ct = Vt at all t.

Definition 20.9 (Complete). The market is said to be complete if every contingent claim is
attainable

Theorem 20.10 (Harrison and Pliska). Let P denote the real world measure of the underlying
asset price Xt. If the market is arbitrage free, there exists an equivalent measure P⋆, such that the
discounted asset price X̂t and every discounted attainable claim Ĉt are P⋆-martingales. Further, if
the market is complete, then P⋆ is unique. In mathematical terms,

Ct = βtE⋆(β−1
T CT | Ft).

P⋆ is called the equivalent martingale measure (EMM) or the risk-neutral measure.
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21. Lecture 21 - Thursday 19 May

For a trading strategy (at, bt), then the value Vt satisfies

Vt = V0 +

∫ t

0

αs dSs +

∫ t

0

bs dβs

where Bs is the riskless asset.
To price an attainable option X, let (at, bt) be a trading strategy with value Vt that replicates

X. Then to avoid arbitrage, the value of X at time t = 0 is given by V0.

21.1. Change of Measure. Let (Ω,F ,P) be a probability space.

Definition 21.1 (Equivalent measure). Let P and Q be measures on (Ω,F). Then for any A ∈ F ,
if

P(A) = 0 ⇐⇒ Q(A) = 0

then we say the measures P and Q are equivalent. If P(A) = 0 ⇒ Q(A) = 0, we write Q << P .

Theorem 21.2 (Radon-Nikodyn). Let Q << P . Then there exists a random variable λ such that
λ ≥ 0, EP(λ) = 1 and

Q(A) =

∫
A

dP = Ep(λ1A)

for any A ∈ F . λ is P=almost surely unique.
Conversely, if there exists λ such that λ ≥ 1, EP(λ) = 1, then defining

Q(A) =

∫
A

λ dP

and then Q is a probability measure and Q << P. Consequently, if Q << P , then

EQ(Z) = EP(λZ)

whenever EQ(|Z|) < ∞.
The random variable λ is called the density of Q with respect to P, and denoted by

λ =
dQ
dP

Example 21.3. Let X ∼ N(0, 1) and Y ∼ N(µ, 1) under probability P. Then there exists a Q
such that Q is equivalent to P and Y ∼ N(0, 1) under Q.
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Proof.

P(X ∈ A) =
1√
2π

∫
A

e−
t2

2 dt

Define Q(A) =

∫
A

e−µX−µ2

2 dP

=
1√
2π

∫
A

e−µx−µ2

2 e−
x2

2 dx

=
1√
2π

∫
A

e−
(µ+x)2

2 dx

�

Then Q << P,P << Q and let
λ =

dQ
dP

= e−µX−µ2

2

Then λ satisfies the conditions of Radon-Nikodyn theorem.
Then we have

EQ(Y ) = EP((X + µ)λ)

=

∫
(X + µ)e−µX−µ2

2 dP

=
1√
2π

(x+ µ)e−
(µ+x)2

2 dx = 0

22. Lecture 22 - Tuesday 24 May

Theorem 22.1. Let λ(t), 0 ≤ t ≤ T be a positive martingale with respect to Ft such that

EP(λ(T )) = 1.

Define a new probability measure Q by

Q(A) =

∫
A

λ(T ) dP

Then Q << P and for any random variable X, we have

EQ(X) = EP(λ(T )X)

EQ(X | Ft) = EP

(
λ(T )X

λ(t)
| Ft

)
(⋆)

=
EP(λ(T )X | Ft)

EP(λ(T ) | Ft)
a.s.

and if X ∈ Ft, then for any s ≤ t, we have

EQ(X | Fs) = EP

(
λ(t)X

λ(s)
| Fs

)
(⋆⋆)
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Consequently a process S(t) is a Q-martingale if and only if

S(t)λ(t) (†)

is a P-martingale

Proof. (⋆). We have

Q(EP(λ(T )) | Ft = 0) = Ep(λ(T )1EP(λ(T ) | Ft=0))

= 0

We have

EQ

(
EP(λ(T )X | Ft)

EP(λ(T ) | Ft)
1A

)
= EQ

(
λ(t)

EP(λ(T )X | Ft)

EP(λ(T ) | Ft)
1A

)
= EP (EP(λ(T )X | Ft)1A)

= EP(λ(T )X1A)

= EQ(X1A)

(⋆⋆). We have

EP

(
λ(t)X

λ(s)
| Fs

)
1

λ(s)
EP(λ(t)X | Fs)

=
1

λ(s)
EP (EP(λ(T )X | Ft) | Fs)

=
1

λ(s)
EP(λ(T )X | Fs)

= EQ(X | Fs)

because of (⋆).
(†). We have

EQ(S(t) | Fu) = S(u)

⇐⇒ EP

(
λ(t)S(t)

λ(u)
| Fu

)
= S(u)

⇐⇒ EP(λ(t)S(t) | Fu) = λ(u)S(u)

as required. �

Theorem 22.2. Let Bs, 0 ≤ s ≤ T be a Brownian motion under P. Let S(t) = Bt + µt, u ̸= 0.
Then there exists a Q equivalent to P such thatS(t) is a Q-Brownian motion and

λ(T ) =
dQ
dP

= e−µBT− 1
2µ

2T .

Note that S(t) is not a martingale under P, but it is a martingale under Q.
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Proof. Under Q,
Q(B0 = 0) =

∫
B0=0

λ(T ) dP = 1

S(t) is a Q-martingale if and only if S(t)λ(t) is a P-martingale. But we have

Xt = S(t)λ(t) = (Bt + µt) e−µBt− 1
2µ

2t

is a martingale.
Finally, note that

[S, S](t) = [B,B](t) = t

�

22.1. Black-Scholes model.

Definition 22.3 (Black-Scholes model). The Black-Scholes model assumes the risky asset St follows
the diffusion process given by

dSt

St
= µdt+ σ dBt

and the riskless asset follows the diffusion
dβt

βt
= r dt

Define the discounted process as follows:

Ŝt =
St

βt
, V̂t =

Vt

βt
, Ĉt =

Ct

βt
.

23. Lecture 23 - Thursday 26 May

Lemma 23.1.

(a) By a simple application of Itô’s lemma,

dŜt

Ŝt

= (µ− r) dt+ σ dBt.

(b) Ŝt is a Q-martingale with
λ =

dQ
dP

= e−qBT− 1
2 q

2T

with q = µ−r
σ .

(c) Note that
dŜt

Ŝt

= σd(Bt +
µ− r

σ
t) = σdB̂t

where B̂t = Bt + qt is a Brownian motion under Q.
(d) dŜt = σŜt dB̂t.
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(e) In a finite market, where St takes only finitely many values, Ŝt is a Q-martingale is a necessary
condition for no-arbitrage.

(f) Note that
dSt

St
= µdt+ σ dBt = r dt+ σ dB̂t

Theorem 23.2. A value process Vt is self financing if and only if the discounted value process V̂t

is a Q-martingale.

dV̂t = at dŜt ⇐⇒ dVt = αdSt + bt dβt

⇐⇒ Vt = V0 +

∫ t

0

as dSs +

∫ t

0

bs dβs

⇐⇒ Vt is self financing.

Proof. By Itô’s formula, we have

dV̂t = e−rt dVt − re−rtVt dt

= e−rt (at dSt + bt dβt)− re−rt (atSt + btβt) dt

at(e
−rt dSt − re−rt dt)

= at dŜt

�

Theorem 23.3. In the Black-Scholes model, there are no arbitrage opportunities.

Proof. For any admissible trading strategy (at, bt), we have that the discounted value process V̂t is
a Q-martingale. So if V0 = 0, then E(V̂0) = 0, and we have

EQ(V̂T ) = EQ(V̂T | F0) = V̂0 = 0

which implies Q(V̂T > 0) = 0, which implies P(VT > 0) = 0, which implies that EP(VT ) = 0, which
then implies no arbitrage. �

Theorem 23.4. For any self financing strategy,

Vt = atSt + btβt = V0 +

∫ t

0

au dSu +

∫ t

0

bu dβu

And so a strategy is self financing if

St dat + βt dbt + d[a, S](t) = 0

We now consider several cases.
(1) If at is of bounded variation, then [a, S](t) = 0. Hence

St dat + βt dbt = 0,
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which implies
dbt = −St

βt
dat

Hence dat · dbt < 0.
(2) If at is a semi-martingale at = a2t+At, then bt must be a semi-martingale, where bt = b2t+Bt

where a2t , b
2
t are the martingale parts and At, Bt are of bounded variation.

24. Lecture 24 - Tuesday 31 May

Theorem 24.1. Given a claim CT under the self-financing assumption, there exists a Q-martingale
such that

Vt = EQ

(
e−r(T−t)CT | Ft

)
,Ft = σ(Bs, 0 ≤ s ≤ t).

In particular, we have
V0 = EQ(e

−rTCT )

Proof. For any Q-martingale V̂t, we have V̂t = EQ(V̂T | Ft). Then

Vt = EQ(e
−r(T−t)CT | Ft),

as VT = CT . �

Theorem 24.2. A claim is attainable (there exists a trading strategy replicating the claim), that
is,

Vt = V0 +G(t)

G(t) =

∫ t

0

au dSu +

∫ t

0

bu dβu

VT ≥ 0, VT = CT

Theorem 24.3. Suppose that CT is a non-negative random variable, Ct ∈ FT and EQ(C
2
T f < ∞),

where Q is defined as before. Then

(a) The claim is replicable.
(b)

Vt = EQ

(
e−r(T−t)CT | Ft

)
⇐⇒ V̂t = EQ(ĈT | Ft)

where ĈT = e−rTCT .
In particular, V0 = EQ(e

−rTCT ) = EQ(ĈT ).

Theorem 24.4. Assume V̂t = EQ(ĈT | Ft). Using the martingale representation theorem, there
exists an adapted process H(s) such that

V̂t = V̂0

∫ t

0

H(s) dB̂s ⇐⇒ dV̂t = H(t) dB̂t.
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On the other hand, dV̂t = at dŜt = at · σŜt dB̂t. Hence we obtain our required result,

at =
H(t)

σŜt

,

and then solve for bt.

Example 24.5. Let CT = f(ST ). Then Vt = EQ
(
e−r(T−t)f(ST ) | Ft

)
. Since Ft = σ(Bs, 0 ≤ s ≤

t) = σ(B̂s, 0 ≤ s ≤ t), and Ŝt is a Q-martingale, we have

Ŝt = Ŝ0e
−σ2

2 t+σB̂t

and so
ST = erT ŜT = Ŝte

rT e−
σ2

2 (T−t)+σ(B̂T−B̂t).

Then

Vt = EQ

[
e−r(T−t)f

(
erT Ŝte

−σ2

2 (T−t)+σ(B̂T−B̂t)
)]

and so
Vt = F (t, St)

where

F (t, x) = EQ

[
e−r(T−t)f

(
e(−

σ2

2 )(T−t)+σ
√
T−tZ

)]
= e−r(T−t)

∫
R
f
(
xe−

σ2

2 (T−t)+σz
√
T−t
)
ϕ(z) dz

where ϕ(z) = 1√
2π

e−
z2

2 .

Example 24.6. In particular, if f(y) = (y −K)+, then we obtain

F (t, x) = e−rθ

∫ ∞

−d′
1

xe−
σ2

2 θ+xz
√
θ− z2

2 dz −K

∫ ∞

−d′
1

e−rθ− z2

2 dz

= xΦ(d′1 + σ
√
θ)−Ke−rθΦ(d′1)

= xΦ(d1)−Ke−rθΦ(d2),

where

d1 =
log
(

x
K

)
+ (r + σ2

2 )θ

σ
√
θ

, d2 = d1 − σ
√
θ

Theorem 24.7 (Black-Scholes model summary). Vt = atSt + btβt, where
dSt

St
= µdt+ σ dBt

dβt

βt
= r dt
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(a) Ŝt = e−rtSt is a Q-martingale, where
dQ
dP

= e−qBT− 1
2 q

2T

and q = µ−r
σ .

Then B̂t = Bt +
µ−r
σ t is a Q-Brownian motion, and dŜt = σŜt dB̂t.

(b) Vt is self-financing if (at, bt) satisfies

St dat + βt dbt + d[a, S](t) = 0

which then implies V̂t is a Q-martingale, V̂t = e−rtVt.
(c) There are no arbitrage opportunities in the Black-Scholes model.

25. Lecture 25 - Thursday 2 June

Theorem 25.1 (Feyman-Kac formula).

(1) Suppose the function F (x, t) solves the boundary value problem

∂F (t, x)

∂t
+ µ(t, x)

∂F (t, x)

∂x
+

1

2
σ2(t, x)

∂2F (t, x)

∂x2
= 0

such that F (T, x) = Ψ(x).
(2) Let St be a solution of the SDE

dSt = µ(t, St) dt+ σ(t, St) dBt (⋆)

where Bt is a Q-Brownian motion
(3) Assume ∫ T

0

E(σ(t, St)
∂2F (t, St)

∂x2
) dt < ∞

Then
F (t, St) = EQ (Ψ(ST ) | Ft) = EQ (F (T, ST ) | Ft) .

where Ft = σ(Bs, 0 ≤ s ≤ t).

Proof. It is enough to show that F (t, St) is a martingale with respect to Ft under Q. By Itô’s lemma,
we have

dF (t, St) =
∂f(t, St)

∂t
dt+

∂F (t, St)

∂x
dSt +

1

2

∂2F (t, St)

∂x2
· (dSt)

2

=

[
∂F

∂t
+ µ(t, St)

∂F

∂x
+

σ2(t, St)

2

∂2F (t, St)

∂x2

]
dt+

∂F (t, St)

∂x
σ(t, St) dBt

=
∂F (t, St)

∂x
σ(t, St) dBt

which is a Q-martingale. �
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Theorem 25.2 (General Feyman-Kac formula). Let St be a solution of the SDE (⋆). Assume that
there is a solution to the PDE

∂F (t, x)

∂t
+ µ(t, x)

∂F (t, x)

∂x
+

1

2
σ2(t, x)

∂2F (t, x)

∂x2
= r(t, x)F (t, x).

Then
F (t, St) = EQ

(
e−

∫ T
t

r(u,Su) duF (T, ST ) | Ft

)
Proof. Again by Itô’s lemma,

dF (t, St) =

(
∂F

∂t
+ µ

∂F

∂x
+

σ2

2

∂2F

∂x2

)
dt+

∂F

∂x
· σ(t, St) dBt

= r(t, x)F (t, St) dt+ dMt

where Mt =
∫ t

0
∂F
∂x σ(u, Su) dBu. Hence we have

dF (t, St) = r(t, St)Xt dt+ dMt

d
[
e−

∫ ν
t

r(u,su) duXν

]
= e−

∫ ν
t

r(u,Su) dudMν (⇒)

e−
∫ T
t

r(u,Su) duF (T, ST ) = F (t, St) +

∫ T

t

e−
∫ ν
t

r(u,Su) du dMν (⇒)

EQ

(
e−

∫ T
t

r(u,Su) duF (T, ST ) | Ft

)
= F (t, St) (⇒)

+ EQ

(∫ T

t

e−
∫ ν
t

r(u,Su) du
∂F

∂x
σ(ν, Sν) dBν | Ft

)
︸ ︷︷ ︸

=0

and so we obtain our result,

F (t, St) = EQ

(
e−

∫ T
t

r(u,Su) duF (T, ST ) | Ft

)
�
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