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1

Time Series Analysis

1.1 Introduction

References:

(i) Brockwell and Davis [2009]

(ii) Brockwell and Davis [2002]

Definition 1.1 (Time Series). A set of observations (Xt), each being

recorded at a predictable time t ∈ T0.

In a continuous time series, T0 is continuous. In a discrete time

series, T0 is discrete.

Definition 1.2 (Time Series Model). Specification of joint distribution

(or only means and covariances) of a sequence of random variables of

which Xt is a realization.

Remark 1.3. A complete probability model specifies the joint distribution of

all the random variables Xt, t ∈ T.

This often requires too many estimators, so we only specify the first and

second order moments.

Example 1.4. When Xt is multivariate IID -

P(X1 = x1, . . . , Xn = xn) =
n

∏
i=1

F(xi) (1.1)

Example 1.5. First order moving average model

Example 1.6. Trend and seasonal component.
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1.2 Stationary Processes

Intuitively, a stationary time series is one where the joint distribution

is invariant to time shifts.

Definition 1.7 (Mean, Covariance function). Define the mean function

µX(t) = E(Xt).

Define the covariance function γX(t, s) = Cov(Xt, Xs) = E((Xt − µX(t))(Xs − µX(s))).

Definition 1.8 (Weak Stationarity). A time series Xt is stationary if

(i) E
(
|Xt|2

)
< ∞ for all t ∈ Z

(ii) E(Xt) = c for all t ∈ Z

(iii) γX(t, s) = γX(t + h, s + h)) for all t, s, h ∈ Z

Definition 1.9 (Strict Stationarity). A time series Xt is said to be strict

stationary if the joint distributions of Xt1,...,Xtk
and Xt1+h, . . . , Xtk+h

are identical for all k and for all t1, . . . , tk, h ∈ Z.

Definition 1.10 (Autocovariance function). For a stationary time

series Xt, define the autocovariance function

γX(t) = Cov(Xt+h, Xt) . (1.2)

and the autocorrelation function

ρX(h) =
γX(h)
γX(0)

. (1.3)

Lemma 1.11 (Properties of the autocovariance function).

γ(0) ≥ 0 (1.4)

|γ(h)| ≤ γ(0) (1.5)

γ(h) = γ(−h) (1.6)

for all h.

Note that these all hold for the autocorrelation function ρ, with the addi-

tional condition that ρ(0) = 1.

Theorem 1.12. A real-valued function defined on the integers is the auto-

covariance function of a stationary time series if and only if it is even and

nonnegative definite.
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Example 1.13. Consider a white noise, with Xt a time series with Xt

uncorrelated with mean zero and variance σ2.

Then

γX(h) = σ2I(h = 0) (1.7)

ρX(h) = I(h = 0) (1.8)

Example 1.14 (First order moving average MA(1)).

Xt = Zt + θZt−1 (1.9)

with Zt ∼WN(0, σ2). Then

γX(h) =


σ2(1 + θ2) h = 0

σ2θ |h| = 1

0 otherwise

(1.10)

ρX(h) =


1 h = 0

θ
1+θ |h| = 1

0 otherwise

(1.11)

Definition 1.15 (Sample Autocovariance). The sample autocovariance

function of {x1, . . . , xn} is defined by

γ̂(h) =
1
n

n−h

∑
j=1

(xj+h − x̄)(xj − x̄), 0 ≤ h < n (1.12)

and γ̂(h) = γ̂(−h), −n < h ≤ 0.

Note that the divisor is n rather than n− h since this ensures that

the sample autocovariance matrix

Γ̂n = (γ̂(i− j))i,j (1.13)

is positive semidefinite.
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1.3 State Space Modesl

Definition 1.16. The observation equation is

Yt = GtXt + Wt. (1.14)

The state equation is

Xt+1 = FtXt + Vt (1.15)

{Yt} has a state-space representation if there exists a state-space

model for {Yt} as specified by the previous equations.

Theorem 1.17 (De Finitte). If {X1, V1, V2, . . . } are independent, then

{Xt} has the Markov property - that is, Xt+1|Xt, Xt−1, · · · = Xt+1|Xt.

1 1 All of Section 8.1 in Introduction to
Time Series and Forecasting

In the stable case, there is a unique stationary solution, given by

Xt =
∞

∑
j=0

FjVt−j−1 (1.16)

Definition 1.18. The state equation is said to be “stable” if the matrix

F has all it’s eigenvalues in the interior of the unit circle .

1.4 Stationary Processes

1.4.1 Linear Processes

Definition 1.19 (Wold Decomposition). If Xt is a nondeterministic

stationary time series, then

Xt =
∞

∑
j=0

ψjZt−j + Vt (1.17)

where

(i) ψ0 = 1 and ∑∞
j=0 ψ2

j < ∞,

(ii) Zt ∼WN(0, σ2),

(iii) Cov(Zs, Vt) = 0 for all s, t,

(iv) Zt = P̃tZt for all t,
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(v) Vt = P̃sVt for all s, t,

(vi) Vt is deterministic.

The sequences Zt, ψj, Vt are unique and can be written explicitly as

Zt = Xt − P̃t−1Xt (1.18)

ψj =
E
(
XtZt−j

)
E(Zt)

2 (1.19)

Vt = Xt −
∞

∑
j=0

ψjZt−j. (1.20)

Definition 1.20. A times series {Xt} is a linear process if it has the

representation

Xt =
∞

∑
j=−∞

ψjZt−j (1.21)

where Zt ∼ WN(0, σ2) and {ψj} is a sequence of constants with

∑∞
j=−∞ |ψj| < ∞.

A linear process is called a moving average or MA(∞) if ψj = 0 for

all j < 0, so

Xt =
∞

∑
j=0

ψjZt−j. (1.22)

Proposition 1.21. Let Yt be a stationary time series with mean zero and

coavariance function γY. If ∑∞
j=−∞ |ψj| < ∞, then the time series

Xt =
∞

∑
j=−∞

ψjYt−j = ψ(B)Yt (1.23)

is stationary with mean zero and autocovariance function

γX(h) =
∞

∑
j=−∞

∞

∑
k=−∞

ψjψkγY(h + k− j). (1.24)

In the special case where Xt is a linear process,

γX(h) =
∞

∑
j=−∞

ψjψj+hσ2. (1.25)

1.4.2 Forecasting Stationary Time Series

Our goal is to find the linear combination of 1, Xn, Xn−1, . . . , X1 that

forecasts Xn+h with minimum mean squared error. The best linear
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predictor in terms of 1, Xn, . . . , X1 will be deonted by PnXn+h and

clearly has the form

PnXn+h = a0 + a1Xn + · · ·+ anX1. (1.26)

To find these equations, we solve the convex problem by setting

derivatives to zero, and obtain the result given below.

Theorem 1.22 (Properties of h-step best linear predictor PnXn+h). (i)

PnXn+h = µ +
n

∑
i=1

ai(Xn+1−i − µ) (1.27)

where an = (a1, . . . , an) satisfies

Γnan = γn(h) (1.28)

Γn = [γ(i− j)]ni,j=1 (1.29)

γn(h) = (γ(h), γ(h + 1), . . . , γ(h + n− 1)) (1.30)

(ii)

E
(
(Xn+h − PnXn+h)

2
)
= γ(0)− 〈an, γn(h)〉 (1.31)

(iii)

E(Xn+h − PnXn+h) = 0 (1.32)

(iv)

E
(
(Xn+h − PnXn+h)Xj

)
= 0 (1.33)

for j = 1, . . . , n.

Definition 1.23 (Prediction Operator P(·|W)). Suppose that E
(
U2) <

∞, E
(
V2) < ∞, Γ = Cov(W, W), and β, α1, . . . , αn are constants.

(i)

P(U|W) = E(U) = a′(W−E(W)) (1.34)

where Γa = Cov(U, W).

(ii)

E((U − P(U|W))W) = 0 (1.35)
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and

E(U − P(U|W)) = 0 (1.36)

(iii)

E
(
(U − P(U|W))2

)
= V(U)− a′Cov(U, W) (1.37)

(iv)

Pα1 + α2V + β|W = α1P(U|W) + α2P(V|W) + β (1.38)

(v)

P(
n

∑
i=1

αiWi + β|W) =
n

∑
i=1

αiWi + β (1.39)

(vi)

P(U|W) = EU (1.40)

if Cov(U, W) = 0.

1.4.3 Innovation Algorithm

Theorem 1.24. Suppose Xt is a zero-mean series with E
(
|Xt|2

)
< ∞

for each t and E
(
XiXj

)
= κ(i, j). Let X̂n = 0 if n = 1, and Pn−1Xn if

n = 2, 3, . . . , and let vn = E
(
(Xn+1 − PnXn+1)

2).
Define the innovations, or one-step prediction errors, as Un = Xn − X̂n.

Then we can write

X̂n+1 =

0 n = 0

∑n
j=1 θnj(Xn+1−j − X̂n+1−j)

(1.41)

where the coefficients θn1, . . . , θnn can be computed recursively from the

equations

v0 = κ(1, 1) (1.42)

θn,n−k =
1
vk

(κ(n + 1, k + 1)−
k−1

∑
j=0

θk,k−jθn,n−jvj) (1.43)

for 0 ≤ k < n, and

vn = κ(n + 1, n + 1)−
n−1

∑
j=0

θ2
n,n−jvj. (1.44)
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1.5 ARMA Processes

Definition 1.25. Xt is an ARMA(p, q) process if Xt is stationary and if

for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q (1.45)

where Zt ∼ WN(0, σ2) and the polynomials (1− φ1z− · · · − φpzp)

and (1 + θ1z + · · ·+ θqzq) have no common factors.

It can be more convenient to write this in the form

φ(B)Xt = θ(B)Zt (1.46)

with B the back-shift operator.

ARMA(0, q) is a moving average process of order q (MA(q)).

ARMA(p, 0) is an autoregressive process of order p (AR(p)).

Theorem 1.26. A stationary solution of (1.45) exists (and is the unique

stationary solution) if and only if

φ(z) = 1− φ1z− · · · − φpzp 6= 0 (1.47)

for all |z| = 1

Definition 1.27. An ARMA(p, q) process Xt is causal (or a causal

function of Zt) if there exists constants ψj such that ∑∞
j=0 |ψj| < ∞ and

Xt =
∞

∑
j=0

ψjZt−j (1.48)

for all t.

Theorem 1.28. An ARMA(p, q) process is causal if and only if

φ(z) = 1− φ1z− · · · − φpzp 6= 0 (1.49)

for all |z| ≤ 1.

Note that the coefficients ψj are determined by

ψj −
p

∑
k=1

θkψj−k = θj (1.50)
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for j = 0, 1, . . . . and θ0 = 1, θj = 0 for j > q, and ψj = 0 for j < 0.

Definition 1.29. An ARMA(p, q) is invertible if there exist constants

πj such that ∑∞
j=0 |πj| < ∞ and

Zt =
∞

∑
j=0

πjXt−j (1.51)

for all t.

The coefficients πj are determined by the equations

πj +
q

∑
k=1

θkπj−k = −φj (1.52)

where φ0 = −1, θj = 0 for j > p, and πj = 0 for j < 0.

Theorem 1.30. Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + · · ·+ θqzq 6= 0 (1.53)

for all |z| ≤ 1.

1.5.1 ACF and PACF of an ARMA(p, q) Process

Theorem 1.31. For a causal ARMA(p, q) process defined by

φ(B)Xt = θ(B)Zt (1.54)

we know we can write

Xt =
∞

∑
j=0

ψjZt−j (1.55)

where ∑∞
j=0 ψjzj = θ(z)/φ(z) for |z| ≤ 1.

Thus, the ACVF γ is given as

γ(h) = E(Xt+hXt) = σ2
∞

∑
j=0

ψjψj+|h| (1.56)

A second approach is to multiple each side by Xtk and take expectations,

and obtain a sequence of m homogenous linear difference equations with

constant coefficients. These can be solved to obtain the γ(h) values.

Definition 1.32 (PACF). The partial autocorrelation function (PACF)
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of an AMRA process X is the function α(·) defined by

α(0) = 1 (1.57)

α(h) = φhh, h ≥ 1 (1.58)

where φhh is the last component of Œh = Γ−1
h γh, where Γh = [γ(i−

j)]hi,j=1, and γh = [γ(1), γ(2), . . . , γ(h)].

Theorem 1.33. For an AR(p) process, the sample PACF values at lags

greater than p are approximately independent N(0, 1
n ) random variables.

Thus, if we have a sample PACF satisfying

|α̂(h)| > 1.96√
n

(1.59)

for 0 ≤ h ≤ p and

|α̂(h)| < 1.96√
n

(1.60)

for h > p, this suggests an AR(p) model for the data.

Theorem 1.34 (PACF summary). For an AR(p) process Xt, the PACF

α(·) has the properties that α(p) = φp, and α(h) = 0 for h > p. For h < p

we can compute numerically from the expression that Œh = Γ−1
h flh.

1.5.2 Forecasting ARMA Processes

For the causal ARMA(p, q) process

φ(B)Xt = θ(B)Zt, Zt ∼WN(0, σ2) (1.61)

we can avoid using the full innovations algorithm.

If we apply the algorithm to the transformed process Wt given by

Wt =


1
σ Xt t = 1, . . . , m

1
σ φ(B)Xt t > m

(1.62)

where m = max(p, q).

For notational convenience, take θ0 = 1, θj = 0 for j > q.
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Lemma 1.35. The autocovariances κ(i, j) = E
(
WiWj

)
are found from

κ(i, j) =



σ2γX(i− j) 1 ≤ i, j ≤ m

σ2(γX(i− j)−∑
p
r=1 φrγX(r− |i− j|)) min(i, j) ≤ m < max(i, j) ≤ 2m

∑
q
r=0 θrθr+|i−j| min(i, j) > m

0 otherwise
(1.63)

Applying the innovations algorithm to the process Wt, we obtain

Ŵn+1 =

∑n
j=1 θnj(Wn+1−j − Ŵn+1−j) 1 ≤ n < m

∑
q
j=1 θnj(Wn+1−j − Ŵn+1−j) n ≥ m

(1.64)

where the coefficients θnj and MSE rn = E
(
(Wn+1 − Ŵn+1)

2) are found

recursively using the innovations algorithm.

Since the equations (1.62) allow us to write Xn as a linear combination

of Wj, 1 ≤ j ≤ n, and conversely, each Wn, n ≥ 1 to be written as a

linear combination of Xj, 1 ≤ j ≤ n. Thus the best linear predictor of the

random variable Y in terms of {1, X1, . . . , Xn} is the same as the best linear

predictor of Y in terms of {1, W1, . . . , Wn. Thus, by linearity of P̂n, we have

Ŵt =


1
σ X̂t t = 1, . . . , m

1
σ (X̂t − φ1Xt−1 − · · · − φpXt−p) t > m

(1.65)

which shows that

Xt − X̂t = σ(Wt − Ŵt) (1.66)

Substituting into (1.63) and (1.64), we obtain

X̂n+1 =

∑n
j=1 θnj(Xn+1−j − X̂n+1−j) 1 ≤ n < m

φ1Xn + · · ·+ φpXn+1−p + ∑
q
j=1 θnj(Xn+1−j − X̂n+1−j) n ≥ m

(1.67)

and

E
(
(Xn+1 − X̂n+1)

2
)
= σ2E

(
(Wn+1 − Ŵn+1)

2
)
= σ2rn (1.68)

where θnj and rn are found using the innovation algorithm.
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1.6 Estimation of ARMA Processes

1.6.1 Yule-Walker Equations

Consider estimating a causal AR(p) process. We can write

Xt =
∞

∑
j=0

ψjZt−j (1.69)

where ∑∞
j=0 ψjzj = 1

φ(z) for z ≤ 1.

Multiplying each side by Zt−j, and taking expectations, we obtain

the Yule-Walker equations

ΓpŒ = flp (1.70)

and σ2 = γ(0) −
〈
Œ, flp

〉
where Γp = [γ(i − j)]pi,j=1 and flp =

(γ(1), γ(2), . . . , γ(p)).

If we replace the covariances by the sample covariances γ̂(j), we

obtain a set of equations for the so-called Yule-Walker estimators Œ̂

and σ̂2, given by

Γ̂pŒ̂ = fl̂p (1.71)

and σ̂2 = γ̂(0)−
〈

Œ̂, fl̂p

〉
Theorem 1.36. If Xt is the causal AR(p) process and Œ̂ is the Yule-Walker

estimator of Œ, then

n
1
2 (Œ̂−Œ)

d→ N(0, σ2Γ−1
p ) (1.72)

Moreover, σ̂2 p→ σ2.

Theorem 1.37. If Xt is a causal AR(p) process and Œ̂m is the Yule-Walker

estimate of order m > p, then

n
1
2 (Œ̂m −Œm)

d→ N(0, σ2Γ−1
m ) (1.73)

where Œ̂m is the coefficient vector of the best linear predictor 〈Œm, Xm〉 of

Xm+1 based on Xm, . . . , X1. So Œm = R−1
m æm. In particular, for m > p,

n
1
2 φ̂mm

d→ N(0, 1) (1.74)
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Theorem 1.38 (Durbin-Levinson Algorithm for AR models). Consider

fitting an AR(m) process

Xt − θ̂m1Xt−1 − · · · − θ̂mmXt−m = Zt (1.75)

with Zt ∼WN(0, v̂m).

If γ̂(0) > 0, then the fitted autoregressive models for m = 1, 2, . . . , n− 1

can be determined recursively from the relations

φ̂11 = ρ̂(1) (1.76)

v̂1 = γ̂(0)(1− ρ̂2)(1) (1.77)

φ̂mm =
γ̂(m)−∑m−1

j=1 φ̂m−1,jγ̂(m− j)

v̂m−1
(1.78)

φ̂m1
...

φ̂m,m−1

 = Œ̂m−1 − φ̂mm


φ̂m−1,m−1

...

φ̂m−1,1

 (1.79)

v̂m = v̂m−1(1− φ̂2
mm) (1.80)

Theorem 1.39 (Confidence intervals for AR(p) estimation). Under the

assumption that the order p of the fitted model is the correct value, for large

sample-size n, the region

{Œ ∈ Rp|(Œ− φ̂p)
′Γ̂p(Œ− Œ̂p) ≤

1
n

v̂pχ2
1−α(p)} (1.81)

contains Œp with probability close to 1− α where χ2
1−α(p) is the (1− α)

quantile of the chi-squared distribution with p degrees of freedom.

Similarly, if Φ1−α is the (1− α) quantile of the standard normal distri-

bution and v̂jj is the j-th diagonal element of v̂pΓ̂−1
p , then for large n

{φ̂pj ±Φ1− α
2

1

n
1
2

v̂
1
2
jj} (1.82)

contains φpj with probability close to (1− α).
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1.6.2 Estimation for Moving Average Processes Using the Innovations

Algorithm

Consider estimating

Xt = Zt + θ̂m1Zt−1 + · · ·+ θ̂mmZt−m (1.83)

with Zt ∼WN(0, v̂m).

Theorem 1.40. We can apply the innovation estimates by applying the

recursive relations

v̂0 = γ̂(0) (1.84)

θ̂m,m−k =
1
v̂k

(γ̂(m− k)−
k−1

∑
j=0

θ̂m,m−j θ̂k,k−jv̂j) (1.85)

for k = 0, . . . , m− 1, and

v̂m = γ̂(0)−
m−1

∑
j=0

θ̂2
m,m−jv̂j. (1.86)

Theorem 1.41. Let Xt be the causal invertible ARMA process φ(B)Xt =

θ(B)Zt with Zt ∼ WN(0, σ2), E
(
Z4

t
)
< ∞, and let ψ(z) = ∑∞

j=0 ψjzj =
θ(z)
φ(z) for |z| ≤ 1, and ψ0 = 1 and ψj = 0 for j < 0.

Then for any sequence of positive integers mn, such that m < n, m→ ∞,

and m = o(n
1
3 ) as n→ ∞, we have for each k,

n
1
2

(
θ̂m1 − ψ1, . . . , θ̂mk − ψk)

d→ N(0, A) (1.87)

where A = [aij]
k
i,j=1 and

aij =
min(i,j)

∑
r=1

ψi−rψj−r (1.88)

and

v̂m
p→ σ2. (1.89)

Remark 1.42. Note that for the AR(p) process, the Yule-Walker estimator is

a consistent estimator of Œp. However, for an MA(q) process, the estimator
ˆ̀q is not consistent for the true parameter vector as n→ ∞. For consistency,

it is necessary to use the estimators with m satisfying the conditions given
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in Theorem 1.41.

Theorem 1.43 (Asymptotic confidence regions for the `q).

{θ ∈ R||θ − θ̂mj| ≤ Φ1− α
2

1

n
1
2
(

j−1

∑
k=0

θ̂2
mk)

1
2 } (1.90)

is an (1− α) confidence interval for θmj.

1.6.3 Maximum Likelihood Estimation

Consider Xt a gaussian time series with zero mean and autocovari-

ance function κ(i, j) = E
(
XiXj

)
. Let X̂j = Pj−1Xj. Let Γn be the

covariance matrix and assume Γn is nonsingular. The likelihood of Xn

is

L(Γn) =
1

(2π)
n
2

1

(det Γn)
1
2

exp(−1
2

X′nΓ−1
n Xn) (1.91)

Theorem 1.44. The likelihood of the vector Xn reduces to

L(Γn) =
1√

(2π)n ∏n−1
i=0 ri

exp(−1
2

n

∑
j=1

(Xj − X̂j)
2

rj−1
) (1.92)

Remark 1.45. Even if Xt is not Gaussian, the large sample estimates are

the same for Zt ∼ I ID(0, σ2), regardless of whether or not Zt is Gaussian.

Theorem 1.46 (Maximum Likelihood Estimators for ARMA pro-

cesses).

σ̂2 =
1
n

S(Œ̂, ˆ̀) (1.93)

where Œ̂, ˆ̀ are the values of Œ, ` that minimize

`(Œ, `) = ln(
1
n

S(`, `)) +
1
n

n−1

∑
j=0

ln rj (1.94)

and

S(Œ̂, ˆ̀) =
n

∑
j=1

(Xj − X̂j)
2

rj−1
(1.95)

Theorem 1.47 (Asyptotic Distribution of Maximum Likelihood Esti-
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mators). For a large sample from an ARMA(p, q) process,

fî = N(fi,
1
n

Vfi) (1.96)

where

V(fi) = σ2

E(UtU′t) E(UtV′t )

E(VtU′t) E(VtV′t )

−1

(1.97)

and Ut are the autoregressive process φ(B)Ut = Zt and θ(B)Vt = Zt.

Note that for p = 0, V(fi) = σ2[E(VtV′t )]
−1, and for q = 0, V(fi) =

σ2[E(UtU′t)]
−1.

1.6.4 Order Selection

Definition 1.48 (Kullback-Leibler divergence). The Kullback-Leibler

(KL) divergence between f (·; ψ) and f (·; θ) is defined as

d(ψ|θ) = ∆(ψ|θ)− ∆(θ|θ) (1.98)

where

∆(ψ|θ) = Eθ(−2 ln f (X; ψ)) (1.99)

is the Kullback-Leibler index of f (·; ψ) relative to f (·; θ).

Theorem 1.49 (AICC of ARMA(p, q) process).

AICC(fi) = −2 ln LX(fi,
SX(β)

n
) +

2(p + q + 1)n
n− p− q− 2

(1.100)

Theorem 1.50 (AIC of ARMA(p, q) process).

AIC(fi) = −2 ln LX(fi,
SX(β)

n
) + 2(p + q + 1) (1.101)

Theorem 1.51 (BIC of ARMA(p, q) process).

BIC(fi) = (n− p− q) ln
nσ̂2

n− p− q
+ n(1 + ln

√
2π) + (p + q) ln ∑n

t=1 X2
t − nσ̂2

p + q

(1.102)

where σ̂2 is the MLE estimate of the white noise variance.
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1.7 Spectral Analysis

Let Xt be a zero-mean stationary time series with autocovariance

function γ(·) satisfying ∑∞
h=−∞ |γ(h)| < ∞.

Definition 1.52. The spectral density of Xt is the function f (·) de-

fined by

f (λ) =
1

2π

∞

∑
h=−∞

e−ihλy(h) (1.103)

The summability implies that the series converges absolutely.

Theorem 1.53. (i) f is even

(ii) f (λ) ≥ 0 for all λ ∈ (−π, π].

(iii) γ(k) =
∫ π
−π e−kλ f (λ)dλ =

∫ π
−π cos(kλ) f (λ)dλ.

Definition 1.54. A function f is the spectral density of a stationary

time series Xt with autocovariance function γ(·) if

(i) f (λ) ≥ 0 for all λ ∈ (0, π],

(ii) γ(h) =
∫ π
−π eihλ f (λ)dλ for all integers h.

Lemma 1.55. If f and g are two spectral density corresponding to the

autocovariance function γ, then f and g have the same Fourier coefficients

and hence are equal.

Theorem 1.56. A real-valued function f defined on (−π, π] is the spectral

density of a stationary process if and only if

(i) f (λ) = f (−λ),

(ii) f (λ) ≥ 0

(iii)
∫ π
−π f (λ)dλ < ∞.

Theorem 1.57. An absolutely summable function γ(·) is the autocovari-

ance function of a stationary time series if and only if it is even and

f (λ) =
1

2π

∞

∑
h=−∞

e−ihλγ(h) ≥ 0 (1.104)

for all λ ∈ (−π, π], in which case f (·) is the spectral density of γ(·).
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Theorem 1.58 (Spectral Representation of the ACVF). A function γ(·)
defined on the integers is the ACVF of a stationary time series if and only

if there exists a right-continuous, nondecreasing, bounded function F on

[−π, π] with F(−π) = 0 such that

γ(h) =
∫ π

−π
eihλdF(λ) (1.105)

for all integers h.

Remark 1.59. The function F is a generalized distribution function on

[−π, π] in the sense that G(λ) = F(λ)
F(π)

is a probability distribution function

on [−π, π]. Note that since F(π) = γ(0) = V(X1), the ACF of Xt has the

spectral representation function

ρ(h) =
∫ π

−π
eihλdG(λ) (1.106)

The function F is called the spectral distribution function of γ(·). If F(λ)

can be expressed as F(λ) =
∫ λ
−π f (y)dy for all λ ∈ [−π, π], then f is

the spectral density function and the time series is said to have a continuous

spectrum. If F is a discrete function, then the time series is said to have a

discrete spectrum.

Theorem 1.60. A complex valued function γ(·) is the autocovariance

function of a stationary process Xt if and only if either

(i) γ(h) =
∫ π
−π e−ihvdF(v) for all h = 0,±1, . . . where F is a right-

continuous, non-decreasing, bounded function on [−π, π] with F(−π) =

0, or

(ii) ∑n
i,j=1 aiγ(i− j)aj ≥ 0 for all positive integers n and all a = (a1, . . . , an ∈

Cn).

1.7.1 The Spectral Density of an ARMA Process

Theorem 1.61. If Yt is any zero-mean, possibly complex-valued stationary

process with spectral distribution function FY(·) and Xt is the process

Xt = ∑∞
j=−∞ ψjYt−j where ∑∞

j=−∞ |ψj| < ∞, then Xt is stationary with

spectral distribution function FX(λ) =
∫
−π,λ |∑

∞
j=−∞ ψje−ijv|2dFY(v) for

−π ≤ λ ≤ π.
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If Yt has a spectral density fY(·), then Xt has a spectral density fX(·)
given by fX(λ) = |Ψ(e−iλ)|2 fY(λ) where Ψ(e−iλ) = ∑∞

j=−∞ ψje−ijλ.

Theorem 1.62. Let Xt be an ARMA(p, q) process, not necessarily causal

or invertible satisfying φ(B)Xt = θ(B)Zt, Zt ∼ WN(0, σ2) where

φ(z) = 1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · · + θqzq have

no common zeroes and φ(z) has no zeroes on the unit circle. Then Xt has

spectral density

fX(λ) =
σ2

2π

|θ(e−iλ)|2
||φ(e−iλ)|2

(1.107)

for −π ≤ λ ≤ π.

Theorem 1.63. The spectral density of the white noise process is constant,

f (λ) = σ2

2π .

1.7.2 The Periodogram

Definition 1.64. The periodogram of (x1, . . . , xn) is the function

In(λ) =
1
n
|

n

∑
t=1

xte−itλ|2 (1.108)

Theorem 1.65. If x1, . . . , xn are any real numbers and ωk is any of the

nonzero Fourier Frequencies 2πk
n in (−π, π], then In(ωk) = ∑|h|<n γ̂(h)e−ihωk

where γ̂(h) is the sample ACVF of x1, . . . , xn.

Theorem 1.66. Let Xt be the linear process Xt = ∑∞
j=−∞ ψjZt−j,

Zt ∼ I ID(0, σ2), with ∑∞
j=−∞ |ψj| < ∞. Let In(λ) be the periodogram

of X1, . . . , Xn, and let f (λ) be the spectral density of Xt.

(i) If f (λ) > 0for all λ ∈ [−π, π] and if 0 < λ1 < · · · < λm < π, then the

random vector (In(λ1), . . . , In(λm)) converges in distribution to a vector

of independent and exponentially distributed random variables, the i-th

component which has mean 2π f (λi), i = 1 . . . , m.

(ii) If ∑∞
j=−∞ |ψj||j|

1
2 < ∞, E

(
Z4

1
)
= νσ4 < ∞, ωj = 2π j

n ≥ 0, and
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ωk =
2πk

n ≥ 0, then

Cov
(

In(ωj), In(ωk),−NoValue−
)
=


2(2π)2 f 2(ωj) + O(n−

1
2 ) ωj = ωk = {0, π}

(2π)2 f 2(ωj) + O(n−
1
2 ) 0 < ωj = ωk < π

O(n−1) ωj 6= ωk

(1.109)

Definition 1.67. The estimator f̂ (ω) = f̂ (g(n, ω)) with f̂ (ωj) defined

by 1
2π ∑|k|≤mn

Wn(k)In(wj+k) with m → ∞, m
n → 0, Wn(k) = Wn(−k),

Wn(k) ≥ 0 for all k, and ∑|k|≤m Wn(k) = 1, and ∑|k|W
2
n(k) → 0 as

n→ ∞ is called a discrete spectral average estimator of f (w).

Theorem 1.68. Let Xt be the linear process Xt = ∑∞
j=−∞ ψjZt−j, Zt ∼

I ID(0, σ2), with ∑∞
j=−∞ |ψj||j|

1
2 < ∞ and E

(
Z4

1
)
< ∞. If f̂ is a discrete

spectral average estimator of the spectral density f , then for λ, ω ∈ [0, π],

(i) limn→∞ E
(

f̂ (ω)
)
= f (ω)

(ii)

lim
n→∞

1
∑|j|≤m W2

n(j)
Cov

(
f̂ (ω), f̂ (λ),−NoValue−

)
=



2 f 2(ω) w = λ = {0, π}

f 2(ω) 0 < ω = λ < π

0 ω 6= λ.

(1.110)
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