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1

Time Series Analysis

1.1 Introduction

References:
(i) Brockwell and Davis [2009]
(ii) Brockwell and Davis [2002]

Definition 1.1 (Time Series). A set of observations (X;), each being
recorded at a predictable time ¢t € Tj.
In a continuous time series, Ty is continuous. In a discrete time

series, Ty is discrete.

Definition 1.2 (Time Series Model). Specification of joint distribution
(or only means and covariances) of a sequence of random variables of

which X; is a realization.

Remark 1.3. A complete probability model specifies the joint distribution of
all the random variables X;, t € T.
This often requires too many estimators, so we only specify the first and

second order moments.

Example 1.4. When X; is multivariate IID -
P(X1=x1,...,Xn = %) :HF(x,-) (1.1)

Example 1.5. First order moving average model

Example 1.6. Trend and seasonal component.
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1.2 Stationary Processes

Intuitively, a stationary time series is one where the joint distribution

is invariant to time shifts.

Definition 1.7 (Mean, Covariance function). Define the mean function
]/lx(t) = ]E(Xt)
Define the covariance function yx(t,s) = Cov(X;, Xs) = E((X¢ — ux (1)) (Xs — ux(s)))-

Definition 1.8 (Weak Stationarity). A time series X; is stationary if
(i) E(|X¢*) <ooforallteZ

(i) E(X;) =cforallteZ

(iil) yx(t,s) =yx(t+h,s+h)) forallt,s,heZ

Definition 1.9 (Strict Stationarity). A time series X; is said to be strict
stationary if the joint distributions of Xt],m,th and Xy, p, -, Xpqn

are identical for all k and for all #1,...,t;, h € Z.

Definition 1.10 (Autocovariance function). For a stationary time

series X;, define the autocovariance function

’Yx(i’) = COV(XH_h, Xt) . (1.2)

and the autocorrelation function

rx(h)
h) = .
pX( ) Tx (0) (1 3)
Lemma 1.11 (Properties of the autocovariance function).
7(0) =0 (1.4)
[v(R)] < 7(0) (1.5)
v(h) = v(=h) (1.6)

forall h.
Note that these all hold for the autocorrelation function p, with the addi-
tional condition that p(0) = 1.

Theorem 1.12. A real-valued function defined on the integers is the auto-
covariance function of a stationary time series if and only if it is even and

nonnegative definite.
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Example 1.13. Consider a white noise, with X; a time series with X;

uncorrelated with mean zero and variance 2.
Then
vx(h) = oc¥(h = 0) (1.7)
px(h) =1I(h=0) (1.8)

Example 1.14 (First order moving average MA(1)).
X =2 +607Zi4 (1.9)

with Zy ~ WN(0,02). Then

c?(1+6%) h=0

x(h) = { 020 Ih) =1 (1.10)
0 otherwise
1 h=0

ox(h) = 1% [n =1 (1.11)
0 otherwise

Definition 1.15 (Sample Autocovariance). The sample autocovariance

function of {x1,...,x,} is defined by

1S -

= 2 Xigp —%)(xj—%),0<h<n (1.12)
and 4(h) = 4(—=h), —n < h <0.

Note that the divisor is #n rather than n — h since this ensures that

the sample autocovariance matrix
L= (G —1))i, (1.13)

is positive semidefinite.
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1.3 State Space Modesl

Definition 1.16. The observation equation is
Y: = G Xy + Wh. (1.14)
The state equation is
Xip1 = EBXi + Vi (1.15)

{Y:} has a state-space representation if there exists a state-space

model for {Y;} as specified by the previous equations.

Theorem 1.17 (De Finitte). If {X;, V3, Va, ...} are independent, then
{X+} has the Markov property - that is, X1 1|Xe, Xp—1, -+ = Xp1| X

1 * All of Section 8.1 in Introduction to

. . . . . Time Series and Forecasting
In the stable case, there is a unique stationary solution, given by

Xe=Y PV (1.16)
j=0

Definition 1.18. The state equation is said to be “stable” if the matrix

F has all it’s eigenvalues in the interior of the unit circle .

1.4 Stationary Processes

1.4.1 Linear Processes

Definition 1.19 (Wold Decomposition). If X; is a nondeterministic

stationary time series, then
Xy = Z YiZij+ Vi (1.17)
j=0

where

(i) $o=1land 1, ¢]2 < oo,
(ii) Z; ~ WN(0,0?),
(iii) Cov(Zs, Vi) =0 for all s, ¢,

(iv) Z; = P;Z; for all ¢,
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(v) Vi = BV for all s, ¢,
(vi) V; is deterministic.

The sequences Z, §;, V} are unique and can be written explicitly as

7y = Xp — Pt_lXt (1.18)
E(XiZ )
i = 1.1
AL (1.19)
Vi=X; — Z IIJ]Zt_] (1.20)
j=0

Definition 1.20. A times series {X;} is a linear process if it has the

representation

X = Z IP]th] (1.21)

]:700
where Z; ~ WN(0,0?) and {4;} is a sequence of constants with
L7 oo |thj] < oo
A linear process is called a moving average or MA() if 1; = 0 for

allj <0, so
Xt = Z l/)]Zt_] (1.22)
j=0

Proposition 1.21. Let Y; be a stationary time series with mean zero and

coavariance function vyy. If 152, [¢j| < oo, then the time series

Xt = 2 1’L7]Yt_] = QU(B)Yt (1.23)

j=—0c0

is stationary with mean zero and autocovariance function

yx(h) =Y. Y ¢ipery(h+k—j). (1.24)

j:—oo k=—00

In the special case where X; is a linear process,

vx(h) =) Yjjno”. (1.25)

j=—c0

1.4.2 Forecasting Stationary Time Series

Our goal is to find the linear combination of 1, X;;, X;,_1, ..., Xj that

forecasts X, with minimum mean squared error. The best linear
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predictor in terms of 1, Xy, ..., X1 will be deonted by P, X, and

clearly has the form
PuXyip =a0+m Xy + - +a, Xy (1.26)

To find these equations, we solve the convex problem by setting

derivatives to zero, and obtain the result given below.

Theorem 1.22 (Properties of h-step best linear predictor P, X, ). (i)

n
PuXypn = p+ Y ai(Xup1—i — ) (1.27)
i=1

where a, = (ay, .. .,an) satisfies

I'hay = n (h> (1.28)
Tw = [v(i = Dlij= (1.29)
Yu(h) = (y(h),y(h+1),...,y(h+n—1)) (1.30)

(ii)
E((Xuin = PaXousn)?) = 7(0) = (an () (130)

(iii)
E(X,in — PuXyin) =0 (1.32)

(iv)
E (Xt — PaXpin)Xj) =0 (133)

forj=1,...,n

Definition 1.23 (Prediction Operator P(:|W)). Suppose that E(U?) <
o, ]E(Vz) < 00, T =Cov(W,W), and B, a3, ...,a, are constants.

@)
P(UW) = E(U) = a'(W — E(W)) (134

where I'a = Cov(U, W).

(ii)
E((U - P(U[W))W) =0 (1.35)
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and
E(U—-P(UW))=0 (1.36)

(i)
E ((u - P(u|W))2) = V(U) —a'Cov(U,W)  (1.37)

(iv)
Pay + apV + BIW = a1 P(U|W) + a;P(V W) + (1.38)
(V) n n
P()_ aiW;i+BIW) =) a;W; + B (1.39)
i=1 i=1
(vi)
P(U|W) = EU (1.40)

if Cov(U, W) = 0.

1.4.3 Innovation Algorithm

Theorem 1.24. Suppose X; is a zero-mean series with E(|X;|*) < oo
for each t and E(X;X;) = «(i,j). Let X, = 0if n = 1, and P,_1X,, if
n=23,... andlet v, = E((Xy41 — PaXnt1)?).
Define the innovations, or one-step prediction errors, as U, = X, — X,
Then we can write
. 0

Rn1 = A (1.41)
2;1:1 an(XnJrlfj - Xn+1fj)

S
I

where the coefficients 0,1, . . ., 0nn can be computed recursively from the

equations
vo =x(1,1) (1.42)
1 k-1
Opp—k = ;k(K(n +Lk+1) =Y Ok iOnn—j0)) (1.43)
j=0

for 0 <k < n, and

n—1
on=x(n+1,n+1)- Y Gﬁ,n_]-vj. (1.44)
j=0

11
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1.5 ARMA Processes

Definition 1.25. X; is an ARMA(p, q) process if X; is stationary and if

for every f,
Xt =1 Xp 10— —pXp—p=Zt + 1 Zt 1+ -+ 0,219 (1.45)

where Z; ~ WN(0,0?) and the polynomials (1 — ¢z — - - — ¢ppzF)
and (1+ 61z + - - - + 6,27) have no common factors.

It can be more convenient to write this in the form
¢(B)X: = 0(B)Z: (1.46)

with B the back-shift operator.
ARMA(Q, g) is a moving average process of order g (MA(g)).
ARMA(p, 0) is an autoregressive process of order p (AR(p)).

Theorem 1.26. A stationary solution of (1.45) exists (and is the unique

stationary solution) if and only if
P(z) =1—rz—-- —ppz" #0 (1.47)
forall |z| =1

Definition 1.27. An ARMAC(p, q) process X; is causal (or a causal

function of Z;) if there exists constants ; such that Y32 [¢);| < o0 and

Xi=Y 97 (1.48)
=0
for all ¢.
Theorem 1.28. An ARMA(p, q) process is causal if and only if
Pp(z) =1—r1z— - —pzl #0 (1.49)

forall |z| < 1.
Note that the coefficients ; are determined by

p
i— Y Ok = 6; (1.50)
k=1
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forj=0,1,....and 6y =1,0; =0 for j > q, and ; = 0 for j < 0.

Definition 1.29. An ARMA(p, q) is invertible if there exist constants

7 such that 72 |77 < co and
Zy = Z 70X (1.51)
j=0

for all ¢.

The coefficients 71; are determined by the equations

i+ ké Otk = —¢; (1.52)
where ¢p = —1,6; =0 for j > p, and 7r; = 0 for j < 0.
Theorem 1.30. Invertibility is equivalent to the condition
0(z) =1+01z+ -+ 052" #0 (1.53)

forall |z| < 1.

1.5.1  ACF and PACF of an ARMA(p, q) Process
Theorem 1.31. For a causal ARMA(p, q) process defined by
¢(B)X; = 0(B)Z; (1.54)

we know we can write
(o)
Xi =) ¥iZ_j (1.55)
=0

where }° izl = 0(z)/¢(z) for |z| < 1.
Thus, the ACVF v is given as

v(h) = E(XpnXe) = 02 Y i (1.56)
=0

A second approach is to multiple each side by X, and take expectations,
and obtain a sequence of m homogenous linear difference equations with

constant coefficients. These can be solved to obtain the y(h) values.

Definition 1.32 (PACF). The partial autocorrelation function (PACF)
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of an AMRA process X is the function «(-) defined by

x(0) =1 (1.57)
a(h) = ppp,h > 1 (1.58)

where ¢y, is the last component of (E;, = F;lfyh, where ', = [y(i —
Miizys and v, = [v(1),7(2),..., v ()],

Theorem 1.33. For an AR(p) process, the sample PACF values at lags
greater than p are approximately independent N (0, %) random variables.

Thus, if we have a sample PACF satisfying

)| > 2 (1.59)
for 0 < h < pand
&(h)| < 1\/95 (1.60)

for h > p, this suggests an AR(p) model for the data.

Theorem 1.34 (PACF summary). For an AR(p) process X;, the PACF
a(-) has the properties that a(p) = ¢p, and a(h) = 0 for h > p. For h < p

we can compute numerically from the expression that (B, = F;lﬂh.

1.5.2  Forecasting ARMA Processes

For the causal ARMA(p, q) process
¢(B)X; = 6(B)Zi, Zt ~ WN(0,0?) (1.61)

we can avoid using the full innovations algorithm.

If we apply the algorithm to the transformed process W; given by

1
=X t=1,...,m
Wy=<"7 t (1.62)

LoB)X; t>m

where m = max(p, q).

For notational convenience, take 6y =1, 6; = 0 for j > g.
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Lemma 1.35. The autocovariances x(i,j) = E(W;W;) are found from

c2yx(i—7) l<ij<m
“(ij) = o (yx(i—j) = Ly ¢ryx(r = |i = jI))  min(i,j) <m < max(i,f) < 2m
Y0 08 min(i,j) > m
0 otherwise
(1.63)
Applying the innovations algorithm to the process Wi, we obtain
Wn+1 _ Z]r'lzl enj(wn+1fj - WnJrlfj) IT<n<m (1.64)

Z?:1 enj(wnﬂfj - n+17]') n>m

where the coefficients 6,,; and MSE r, = E((Wy41 — Wy41)?) are found
recursively using the innovations algorithm.

Since the equations (1.62) allow us to write X, as a linear combination
of Wj, 1 < j < n, and conversely, each Wy, n > 1 to be written as a
linear combination of X]-, 1 < j < n. Thus the best linear predictor of the
random variable Y in terms of {1, Xy, ..., Xu} is the same as the best linear

predictor of Y in terms of {1, Wy, ..., Wy,. Thus, by linearity of P,, we have

W %Xt tzl,...,m ( 6 )
t: 1. 5
LXK =1 Xeo1— = ppXi—p) t>m

which shows that
Xt — Xt = O'(Wt - Wt) (166)

Substituting into (1.63) and (1.64), we obtain

5 Z?:] enj(X'flﬁ’l*]‘ - )A(n+1fj) I<n<m
Xp1 = q N
Pr1Xn+-+ ¢an+1—p + Zj:l enj(XﬂJrl*j - Xn+lfj) n=>m
(1.67)
and

E ((Xn+1 - XnJrl)z) = 0’E ((Wn+1 - WnJrl)z) =01y (1.68)

where 6, and r,, are found using the innovation algorithm.

15



16 ANDREW TULLOCH

1.6 Estimation of ARMA Processes

1.6.1  Yule-Walker Equations

Consider estimating a causal AR(p) process. We can write
Xt =) ¥jZs-j (1.60)
j=0

) i 1
where ijo Pzl = e forz < 1.
Multiplying each side by Z;_;, and taking expectations, we obtain

the Yule-Walker equations
I,&E=1l, (1.70)

and 02 = 7(0) — (G, fl,) where T, = [y(i — j)]fjj:l and fl, =
(r(1),7(2),---, v(p))-

If we replace the covariances by the sample covariances (j), we
obtain a set of equations for the so-called Yule-Walker estimators (B
and 62, given by
and 6% = 4(0) — <CE,flp>
Theorem 1.36. If X; is the causal AR(p) process and CE is the Yule-Walker
estimator of CE, then

A

n? (@& - @) % N(0,0°r, ") (1.72)

~2 P
Moreover, 5% 5 o2,

Theorem 1.37. If X; is a causal AR(p) process and CE,y, is the Yule-Walker

estimate of order m > p, then

A

n’ (Ey — Ep) LN N(O, 021“;11) (1.73)

where GE,, is the coefficient vector of the best linear predictor (@, X of
Xm+1 based on Xy, ..., Xq. So By, = R,;laem. In particular, for m > p,

n%émm 4, N(0,1) (1.74)
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Theorem 1.38 (Durbin-Levinson Algorithm for AR models). Consider
fitting an AR(m) process

X =0 Xeo1— = O Xe—m = Zi (1.75)

with Zy ~ WN(0, By ).
If 4(0) > 0, then the fitted autoregressive models form = 1,2,...,n—1

can be determined recursively from the relations

$11 =p(1) (1.76)
o1 =7(0)(1 - p*)(1) (1.77)
L ) =X P (m - )

¢mm = d ; . Y (1.78)

4A7m1 ‘f)m—l m—1
= @mfl - @mm (1'79)

(ﬁm,mfl (ﬁm*Ll

O = Z’jm—l(l - gﬁgmz) (1‘80)

Theorem 1.39 (Confidence intervals for AR(p) estimation). Under the
assumption that the order p of the fitted model is the correct value, for large

sample-size n, the region

PN A 1
{E e R|(E -~ §,) (B~ &) <

ﬁpX%—a(P)} (1-81)

contains QB with probability close to 1 — a where x3_, (p) is the (1 — )
quantile of the chi-squared distribution with p degrees of freedom.
Similarly, if ®1_, is the (1 — a) quantile of the standard normal distri-

bution and 0;; is the j-th diagonal element of zﬁpf; 1, then for large n
1
0%} (1.82)

contains §,; with probability close to (1 — a).
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1.6.2 Estimation for Moving Average Processes Using the Innovations

Algorithm
Consider estimating
Xt = Zt + émlzt—l +-- 4+ émmztfm (1-83)

with Z; ~ WN(0, ).

Theorem 1.40. We can apply the innovation estimates by applying the

recursive relations

oo = 7(0) (1.84)
A k_l A~
Omm—k = Tk('?(m —k) 2 Orm,im— Ok k ]?J]) (1.85)
j=0
fork=0,...,m—1,and
m—1 R
om =4(0) = Y 63, 0. (1.86)
j=0

Theorem 1.41. Let X; be the causal invertible ARMA process ¢(B)X; =
0(B)Z; with Z; ~ WN(0,0%), E(Z}) < oo, and let (z) = L2, Yz =
0 .
%for |z| <1, and Yo = 1 and ¢; = 0 for j < 0.

Then for any sequence of positive integers my, such that m < n, m — oo,

1
and m = o(n3) as n — oo, we have for each k,

Téml - 1P1, e rémk - lpk) i> N<01A) (1-87)

where A = [aij]i’{,jzl and

min(i,j)
ajj = Z YirPj—r (1.88)
r=1
and
Om 52 (1.89)

Remark 1.42. Note that for the AR(p) process, the Yule-Walker estimator is
a consistent estimator of E,. However, for an MA(q) process, the estimator
Cq is not consistent for the true parameter vector as n — oo. For consistency,

it is necessary to use the estimators with m satisfying the conditions given
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in Theorem 1.41.

Theorem 1.43 (Asymptotic confidence regions for the *;).

ji—1

N 1 Ay (1
{0 € RI[6—0,j| <@g — () 0242} (1.90)
0

]
n2 k=

is an (1 — a) confidence interval for 0,,;.

1.6.3 Maximum Likelihood Estimation

Consider X; a gaussian time series with zero mean and autocovari-
ance function (i, j) = E(X;X;). Let X; = P;,_1X;. Let T, be the
covariance matrix and assume I';; is nonsingular. The likelihood of X,

is

1
L(T,) = Cep(— XL X)) (o)

(271)7 (detT,)2

Theorem 1.44. The likelihood of the vector X,, reduces to

1 1 (X - X)?
LTy) = ———=exp(—5 )}, — ) (1.92)
(2m)n I—[?z_ol 7; 2 ]; Tji-1

Remark 1.45. Even if X; is not Gaussian, the large sample estimates are

the same for Z; ~ 11D(0,0?), regardless of whether or not Zy is Gaussian.

Theorem 1.46 (Maximum Likelihood Estimators for ARMA pro-

cesses).
. 1.4
0= _S(&,") (1.93)

where G, are the values of ," that minimize

. 1o 1
U@,") =In(=5(,")) + ~ ) Inr; (1.94)
n n =
and
o (X -X)?
S(ES) =), ——— (1.95)
= i1

Theorem 1.47 (Asyptotic Distribution of Maximum Likelihood Esti-

19
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mators). For a large sample from an ARMA(p, q) process,
. I -
fi= N(fi, EVﬁ) (1.96)

where
-1
E(UL) E(UV)

V(i) = o?
E(Vil;) E(WVVY)

(1.97)

and Uy are the autoregressive process ¢(B)Uy = Z; and 0(B)Vy = Z;.
Note that for p = 0, V(fi) = ¢?[E(V;V})]"}, and for g = 0, V(fi) =
B,

1.6.4 Order Selection

Definition 1.48 (Kullback-Leibler divergence). The Kullback-Leibler
(KL) divergence between f(-;¢) and f(-;0) is defined as

d(p|6) = A(y|6) — A(616) (1.98)
where
A(Yl0) = Eg(—2In f(X;¢)) (1.99)
is the Kullback-Leibler index of f(-;9) relative to f(-;8).

Theorem 1.49 (AICC of ARMA(p, q) process).

AICC(£i) = —21n Ly (6, SXB)y 4 2p+a+Dn (1.100)
n n—p—q—2
Theorem 1.50 (AIC of ARMA(p, q) process).
AIC(fi) = —21nLX(ﬁ,SXT('m)+2(p+q+l) (1.101)
Theorem 1.51 (BIC of ARMA(p, q) process).
no? Yy X2 —no?
BIC(fi)=(n—p—q)ln———— +n(1+InvV2m)+ (p+q) In ==L —
(i) =(n—p—9q) r— ( )+ (p+4q) vt a
(1.102)

where 62 is the MLE estimate of the white noise variance.
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1.7 Spectral Analysis
Let X; be a zero-mean stationary time series with autocovariance
function y(-) satisfying Y5> _ . |y(h)| < oco.

Definition 1.52. The spectral density of X; is the function f(-) de-
fined by

) = g 3 eyl (1.109)

h=—co
The summability implies that the series converges absolutely.
Theorem 1.53.(i) f is even
(ii) f(A) >0forall A € (—m, 7.
(iii) y(k) = [T e F f(A)dA = [T cos(kA)f(A)dA.

Definition 1.54. A function f is the spectral density of a stationary

time series X; with autocovariance function -y(-) if
(@) f(A)>0forall A€ (0,7],
(i) y(h) = [ €M f(A)dA for all integers h.

Lemma 1.55. If f and g are two spectral density corresponding to the
autocovariance function <y, then f and g have the same Fourier coefficients

and hence are equal.

Theorem 1.56. A real-valued function f defined on (—m, 7| is the spectral

density of a stationary process if and only if
i) f(A) =f(=A),

(i) f(A) >0

(iii) [ f(A)dA < 0.

Theorem 1.57. An absolutely summable function y(-) is the autocovari-

ance function of a stationary time series if and only if it is even and

fN) = 5= Y ey >0 (1.104)

h=—o00

forall A € (—m, 7t], in which case f(-) is the spectral density of y(-).

21
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Theorem 1.58 (Spectral Representation of the ACVF). A function «(+)
defined on the integers is the ACVF of a stationary time series if and only
if there exists a right-continuous, nondecreasing, bounded function F on

[— 7, 7] with F(—m) = 0 such that
T,
y(h) = / e"dF(A) (1.105)
-7

for all integers h.

Remark 1.59. The function F is a generalized distribution function on
[—7t, 7t] in the sense that G(A) = FéA; is a probability distribution function
on [—mt, 7t|. Note that since F(rt) = y(0) = V(Xy), the ACF of X; has the

spectral representation function

p(h) = /_7; e"MdG(A) (1.106)

The function F is called the spectral distribution function of y(-). If F(A)
can be expressed as F(A) = f:\nf(y)dyfor all A € [—m, 7|, then f is
the spectral density function and the time series is said to have a continuous
spectrum. If F is a discrete function, then the time series is said to have a

discrete spectrum.

Theorem 1.60. A complex valued function y(-) is the autocovariance

function of a stationary process X; if and only if either

(i) y(h f_ e~ " dF(v) forallh = 0,41,... where F is a right-

continuous, non-decreasing, bounded function on [—rt, t) with F(—7m) =

0, or

(i) Y.y aiy(i—j)a; = 0 for all positive integers n and all a = (a1, ..., an €
c").

1.7.1  The Spectral Density of an ARMA Process

Theorem 1.61. If Y} is any zero-mean, possibly complex-valued stationary
process with spectral distribution function Fy(-) and X; is the process

Xp = Y2 o §jYe—j where Y2 | < oo, then X, is stationary with
spectral distribution function Fx(A) = [ | DR wje_if”|2dl-”y(v)for
—nm<A<rm.
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If Yy has a spectral density fy(-), then Xy has a spectral density fx(-)
given by fx(A) = [¥(e )2 fy(A) where ¥ (e7) = Y2 e wje_ifA.

Theorem 1.62. Let X; be an ARMA(p, q) process, not necessarily causal
or invertible satisfying ¢(B)X; = 0(B)Zi, Zt ~ WN(0,0?) where
P(z) =1—pr1z— - —¢ppzl and 0(z) = 1+ 61z + - - - + 0,27 have
no common zeroes and ¢(z) has no zeroes on the unit circle. Then Xy has
spectral density

0.2 |9(eii/\)|2

N = 2 o mP (1.107)

for —-m <A<

Theorem 1.63. The spectral density of the white noise process is constant,
2

fA) = 5=
1.7.2  The Periodogram

Definition 1.64. The periodogram of (x, ..., xy) is the function
1 & i
Li(A) = E' Y xe A (1.108)
=1

Theorem 1.65. If x1,...,x, are any real numbers and wy, is any of the

n

where §(h) is the sample ACVF of x1, ..., Xy.

nonzero Fourier Frequencies 2% in (—r, 71, then I(wy) = Yinj<n 4 (h)e~hewx

Theorem 1.66. Let X; be the linear process Xy = 2}-";_00 YiZij,
Zy ~ 1ID(0,0?), with Y22,
of X1,..., X, and let f(A) be the spectral density of X;.

[hj| < oco. Let I,(A) be the periodogram

(i) If f(A) > Oforall A € [—m, Tl and if 0 < Ay < -+ < Ay, < 7, then the
random vector (1,(A1),..., In(Am)) converges in distribution to a vector
of independent and exponentially distributed random variables, the i-th

component which has mean 27tf (A;),i=1...,m.

(iD) XS o |9illjl2 < oo, E(Z4) = vo* < oo, wj = 24 > 0,and

23
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wi = 27”7‘ > 0, then

2(27)2f2(w;) +O(n™ %) w; = wy = {0, 71}
Cov(Iy(wj), In(wg), —NoValue—) = (Zn)zfz(w]-) + O(n*%) O<wj=wp<m
Oo(n=1h w;j # Wy

(1.109)

Definition 1.67. The estimator f(w) = f(g(1, w)) with f (wj) defined
bY 2 X<y W () I (w) 1) with m — 00, 2 — 0, Wy (k) = Wu(—k),
Wi (k) > 0 for all k, and ¥y, Wu(k) = 1, and L Wi(k) — Oas

n — oo is called a discrete spectral average estimator of f(w).

Theorem 1.68. Let X; be the linear process X; = Z}?';foo YiZij, Lt ~
11D(0,0?), with o |1,bj||j|% < coand E(Z}) < co. If fis a discrete
spectral average estimator of the spectral density f, then for A, w € [0, 7],

—00

(i) limy o0 B(f(@)) = flw)

(ii)
2f2(w) w=A=1{0,7}
2 —
nh_r)r(}o WCOU(f(w),f()\), —NoVulue—) = fllw) 0<w=A<m
0 w#A

(1.110)
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