ANDREW TULLOCH

TIME SERIES AND MONTE CARLO INFERENCE

TRINITY COLLEGE
THE UNIVERSITY OF CAMBRIDGE

Contents

1	Time !	Series Analysis 5	
	1.1 In	troduction 5	
	1.2 St	rationary Processes 6	
	1.3 St	ate Space Modesl 8	
	1.4 St	rationary Processes 8	
	1.4.1	Linear Processes 8	
	1.4.2	Forecasting Stationary Time Series 9	
	1.4.3	Innovation Algorithm 11	
	1.5 A	RMA Processes 12	
	1.5.1	ACF and PACF of an ARMA(p,q) Process 13	
	1.5.2	Forecasting ARMA Processes 14	
	1.6 Es	stimation of ARMA Processes 16	
	1.6.1	Yule-Walker Equations 16	
	1.6.2	Estimation for Moving Average Processes Using the Innovations Algorithm	18
	1.6.3	Maximum Likelihood Estimation 19	
	1.6.4	Order Selection 20	
	1.7 Sp	pectral Analysis 21	
	1.7.1	The Spectral Density of an ARMA Process 22	
	1.7.2	The Periodogram 23	

2 Bibliography 25

Time Series Analysis

1.1 Introduction

References:

- (i) Brockwell and Davis [2009]
- (ii) Brockwell and Davis [2002]

Definition 1.1 (Time Series). A set of observations (X_t) , each being recorded at a predictable time $t \in T_0$.

In a continuous time series, T_0 is continuous. In a discrete time series, T_0 is discrete.

Definition 1.2 (Time Series Model). Specification of joint distribution (or only means and covariances) of a sequence of random variables of which X_t is a realization.

Remark 1.3. A complete probability model specifies the joint distribution of all the random variables X_t , $t \in T$.

This often requires too many estimators, so we only specify the first and second order moments.

Example 1.4. When X_t is multivariate IID -

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n F(x_i)$$
 (1.1)

Example 1.5. First order moving average model

Example 1.6. *Trend and seasonal component.*

1.2 Stationary Processes

Intuitively, a stationary time series is one where the joint distribution is invariant to time shifts.

Definition 1.7 (Mean, Covariance function). Define the mean function $\mu_X(t) = \mathbb{E}(X_t)$.

Define the covariance function $\gamma_X(t,s) = \text{Cov}(X_t,X_s) = \mathbb{E}((X_t - \mu_X(t))(X_s - \mu_X(s))).$

Definition 1.8 (Weak Stationarity). A time series X_t is stationary if

- (i) $\mathbb{E}(|X_t|^2) < \infty$ for all $t \in \mathbb{Z}$
- (ii) $\mathbb{E}(X_t) = c$ for all $t \in \mathbb{Z}$
- (iii) $\gamma_X(t,s) = \gamma_X(t+h,s+h)$ for all $t,s,h \in \mathbb{Z}$

Definition 1.9 (Strict Stationarity). A time series X_t is said to be strict stationary if the joint distributions of $X_{t_1,...,X_{t_k}}$ and $X_{t_1+h},...,X_{t_k+h}$ are identical for all k and for all $t_1,...,t_k,h \in Z$.

Definition 1.10 (Autocovariance function). For a stationary time series X_t , define the autocovariance function

$$\gamma_X(t) = \operatorname{Cov}(X_{t+h}, X_t). \tag{1.2}$$

and the autocorrelation function

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}. (1.3)$$

Lemma 1.11 (Properties of the autocovariance function).

$$\gamma(0) \ge 0 \tag{1.4}$$

$$|\gamma(h)| \le \gamma(0) \tag{1.5}$$

$$\gamma(h) = \gamma(-h) \tag{1.6}$$

for all h.

Note that these all hold for the autocorrelation function ρ , with the additional condition that $\rho(0) = 1$.

Theorem 1.12. A real-valued function defined on the integers is the auto-covariance function of a stationary time series if and only if it is even and nonnegative definite.

Example 1.13. Consider a white noise, with X_t a time series with X_t uncorrelated with mean zero and variance σ^2 .

Then

$$\gamma_X(h) = \sigma^2 \mathbb{I}(h=0) \tag{1.7}$$

$$\rho_X(h) = \mathbb{I}(h=0) \tag{1.8}$$

Example 1.14 (First order moving average MA(1)).

$$X_t = Z_t + \theta Z_{t-1} \tag{1.9}$$

with $Z_t \sim WN(0, \sigma^2)$. Then

$$\gamma_X(h) = \begin{cases} \sigma^2(1+\theta^2) & h = 0\\ \sigma^2\theta & |h| = 1\\ 0 & otherwise \end{cases}$$
 (1.10)

$$\rho_X(h) = \begin{cases} 1 & h = 0 \\ \frac{\theta}{1+\theta} & |h| = 1 \\ 0 & otherwise \end{cases}$$
 (1.11)

Definition 1.15 (Sample Autocovariance). The sample autocovariance function of $\{x_1, \ldots, x_n\}$ is defined by

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{i=1}^{n-h} (x_{j+h} - \bar{x})(x_j - \bar{x}), 0 \le h < n$$
 (1.12)

and
$$\hat{\gamma}(h) = \hat{\gamma}(-h), -n < h \le 0.$$

Note that the divisor is n rather than n - h since this ensures that the sample autocovariance matrix

$$\hat{\Gamma}_n = (\hat{\gamma}(i-j))_{i,j} \tag{1.13}$$

is positive semidefinite.

1.3 State Space Modesl

Definition 1.16. The observation equation is

$$Y_t = G_t X_t + W_t. ag{1.14}$$

The state equation is

$$X_{t+1} = F_t X_t + V_t (1.15)$$

 $\{Y_t\}$ has a state-space representation if there exists a state-space model for $\{Y_t\}$ as specified by the previous equations.

Theorem 1.17 (De Finitte). If $\{X_1, V_1, V_2, ...\}$ are independent, then $\{X_t\}$ has the Markov property - that is, $X_{t+1}|X_t, X_{t-1}, ... = X_{t+1}|X_t$.

In the stable case, there is a unique stationary solution, given by

$$X_t = \sum_{i=0}^{\infty} F^j V_{t-j-1} \tag{1.16}$$

Definition 1.18. The state equation is said to be "stable" if the matrix F has all it's eigenvalues in the interior of the unit circle.

1.4 Stationary Processes

1.4.1 Linear Processes

Definition 1.19 (Wold Decomposition). If X_t is a nondeterministic stationary time series, then

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j} + V_{t}$$
 (1.17)

where

- (i) $\psi_0 = 1$ and $\sum_{i=0}^{\infty} \psi_i^2 < \infty$,
- (ii) $Z_t \sim WN(0, \sigma^2)$,
- (iii) $Cov(Z_s, V_t) = 0$ for all s, t,
- (iv) $Z_t = \tilde{P}_t Z_t$ for all t,

- (v) $V_t = \tilde{P}_s V_t$ for all s, t,
- (vi) V_t is deterministic.

The sequences Z_t , ψ_j , V_t are unique and can be written explicitly as

$$Z_t = X_t - \tilde{P}_{t-1}X_t \tag{1.18}$$

$$\psi_j = \frac{\mathbb{E}(X_t Z_{t-j})}{\mathbb{E}(Z_t)^2} \tag{1.19}$$

$$V_t = X_t - \sum_{j=0}^{\infty} \psi_j Z_{t-j}.$$
 (1.20)

Definition 1.20. A times series $\{X_t\}$ is a **linear process** if it has the representation

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} \tag{1.21}$$

where $Z_t \sim WN(0, \sigma^2)$ and $\{\psi_i\}$ is a sequence of constants with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$.

A linear process is called a **moving average** or MA(∞) if $\psi_i = 0$ for all i < 0, so

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}.$$
 (1.22)

Proposition 1.21. Let Y_t be a stationary time series with mean zero and coavariance function γ_Y . If $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, then the time series

$$X_{t} = \sum_{j=-\infty}^{\infty} \psi_{j} Y_{t-j} = \psi(B) Y_{t}$$
 (1.23)

is stationary with mean zero and autocovariance function

$$\gamma_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \gamma_Y(h+k-j). \tag{1.24}$$

In the special case where X_t is a linear process,

$$\gamma_X(h) = \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h} \sigma^2.$$
 (1.25)

Forecasting Stationary Time Series

Our goal is to find the linear combination of $1, X_n, X_{n-1}, \dots, X_1$ that forecasts X_{n+h} with minimum mean squared error. The best linear

predictor in terms of $1, X_n, ..., X_1$ will be deonted by $P_n X_{n+h}$ and clearly has the form

$$P_n X_{n+h} = a_0 + a_1 X_n + \dots + a_n X_1. \tag{1.26}$$

To find these equations, we solve the convex problem by setting derivatives to zero, and obtain the result given below.

Theorem 1.22 (Properties of *h*-step best linear predictor P_nX_{n+h}). (i)

$$P_n X_{n+h} = \mu + \sum_{i=1}^n a_i (X_{n+1-i} - \mu)$$
 (1.27)

where $\mathbf{a}_n = (a_1, \dots, a_n)$ satisfies

(iii)

$$\Gamma_n \mathbf{a}_n = \gamma_n(h) \tag{1.28}$$

$$\Gamma_n = [\gamma(i-j)]_{i,i=1}^n$$
 (1.29)

$$\gamma_n(h) = (\gamma(h), \gamma(h+1), \dots, \gamma(h+n-1)) \tag{1.30}$$

(ii)
$$\mathbb{E}\left((X_{n+h} - P_n X_{n+h})^2\right) = \gamma(0) - \langle \mathbf{a}_n, \gamma_n(h) \rangle \tag{1.31}$$

$$\mathbb{E}(X_{n+h} - P_n X_{n+h}) = 0 \tag{1.32}$$

(iv)
$$\mathbb{E}\big((X_{n+h} - P_n X_{n+h}) X_j\big) = 0 \tag{1.33}$$
 for $j = 1, \dots, n$.

Definition 1.23 (Prediction Operator $P(\cdot|\mathbf{W})$). Suppose that $\mathbb{E}(U^2) < \infty$, $\mathbb{E}(V^2) < \infty$, $\Gamma = \text{Cov}(\mathbf{W}, \mathbf{W})$, and $\beta, \alpha_1, \dots, \alpha_n$ are constants.

(i)
$$P(U|\mathbf{W}) = \mathbb{E}(U) = \mathbf{a}'(\mathbf{W} - \mathbb{E}(\mathbf{W}))$$
 (1.34)

where $\Gamma \mathbf{a} = \text{Cov}(U, \mathbf{W})$.

(ii)
$$\mathbb{E}((U - P(U|\mathbf{W}))\mathbf{W}) = 0 \tag{1.35}$$

and

$$\mathbb{E}(U - P(U|\mathbf{W})) = 0 \tag{1.36}$$

(iii)
$$\mathbb{E}\left((U - P(U|\mathbf{W}))^2\right) = \mathbb{V}(U) - \mathbf{a}' \operatorname{Cov}(U, \mathbf{W}) \tag{1.37}$$

(iv)
$$P\alpha_1 + \alpha_2 V + \beta | \mathbf{W} = \alpha_1 P(U|\mathbf{W}) + \alpha_2 P(V|\mathbf{W}) + \beta$$
 (1.38)

(v)
$$P(\sum_{i=1}^{n} \alpha_i W_i + \beta | \mathbf{W}) = \sum_{i=1}^{n} \alpha_i W_i + \beta$$
 (1.39)

(vi)
$$P(U|\mathbf{W}) = EU \tag{1.40}$$
 if $\mathsf{Cov}(U,\mathbf{W}) = 0$.

1.4.3 Innovation Algorithm

Theorem 1.24. Suppose X_t is a zero-mean series with $\mathbb{E}(|X_t|^2) < \infty$ for each t and $\mathbb{E}(X_iX_j) = \kappa(i,j)$. Let $\hat{X}_n = 0$ if n = 1, and $P_{n-1}X_n$ if $n = 2, 3, ..., and let v_n = \mathbb{E}((X_{n+1} - P_n X_{n+1})^2).$

Define the innovations, or one-step prediction errors, as $U_n = X_n - \hat{X}_n$. Then we can write

$$\hat{X}_{n+1} = \begin{cases} 0 & n = 0\\ \sum_{j=1}^{n} \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j}) \end{cases}$$
 (1.41)

where the coefficients $\theta_{n1}, \ldots, \theta_{nn}$ can be computed recursively from the equations

$$v_0 = \kappa(1, 1) \tag{1.42}$$

$$\theta_{n,n-k} = \frac{1}{v_k} (\kappa(n+1,k+1) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} v_j)$$
 (1.43)

for $0 \le k < n$, and

$$v_n = \kappa(n+1, n+1) - \sum_{j=0}^{n-1} \theta_{n, n-j}^2 v_j.$$
 (1.44)

1.5 ARMA Processes

Definition 1.25. X_t is an ARMA(p, q) process if X_t is stationary and if for every t,

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$
 (1.45)

where $Z_t \sim WN(0, \sigma^2)$ and the polynomials $(1 - \phi_1 z - \cdots - \phi_p z^p)$ and $(1 + \theta_1 z + \cdots + \theta_q z^q)$ have no common factors.

It can be more convenient to write this in the form

$$\phi(B)X_t = \theta(B)Z_t \tag{1.46}$$

with *B* the back-shift operator.

ARMA(0, q) is a moving average process of order q (MA(q)). ARMA(p, 0) is an autoregressive process of order p (AR(p)).

Theorem 1.26. A stationary solution of (1.45) exists (and is the unique stationary solution) if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0 \tag{1.47}$$

for all |z|=1

Definition 1.27. An ARMA(p,q) process X_t is causal (or a causal function of Z_t) if there exists constants ψ_j such that $\sum_{j=0}^{\infty} |\psi_j| < \infty$ and

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$$
 (1.48)

for all t.

Theorem 1.28. An ARMA(p,q) process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0 \tag{1.49}$$

for all $|z| \leq 1$.

Note that the coefficients ψ_i are determined by

$$\psi_j - \sum_{k=1}^p \theta_k \psi_{j-k} = \theta_j \tag{1.50}$$

for $j = 0, 1, \ldots$ and $\theta_0 = 1$, $\theta_j = 0$ for j > q, and $\psi_j = 0$ for j < 0.

Definition 1.29. An ARMA(p,q) is invertible if there exist constants π_j such that $\sum_{j=0}^\infty |\pi_j| < \infty$ and

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}$$
 (1.51)

for all t.

The coefficients π_i are determined by the equations

$$\pi_j + \sum_{k=1}^q \theta_k \pi_{j-k} = -\phi_j \tag{1.52}$$

where $\phi_0 = -1$, $\theta_j = 0$ for j > p, and $\pi_j = 0$ for j < 0.

Theorem 1.30. *Invertibility is equivalent to the condition*

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0 \tag{1.53}$$

for all $|z| \leq 1$.

1.5.1 ACF and PACF of an ARMA(p,q) Process

Theorem 1.31. For a causal ARMA(p,q) process defined by

$$\phi(B)X_t = \theta(B)Z_t \tag{1.54}$$

we know we can write

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} \tag{1.55}$$

where $\sum_{j=0}^{\infty} \psi_j z^j = \theta(z)/\phi(z)$ for $|z| \leq 1$.

Thus, the ACVF γ is given as

$$\gamma(h) = \mathbb{E}(X_{t+h}X_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}$$
 (1.56)

A second approach is to multiple each side by X_{t_k} and take expectations, and obtain a sequence of m homogenous linear difference equations with constant coefficients. These can be solved to obtain the $\gamma(h)$ values.

Definition 1.32 (PACF). The partial autocorrelation function (PACF)

of an AMRA process X is the function $\alpha(\cdot)$ defined by

$$\alpha(0) = 1 \tag{1.57}$$

$$\alpha(h) = \phi_{hh}, h \ge 1 \tag{1.58}$$

where ϕ_{hh} is the last component of $\mathbf{E}_h = \Gamma_h^{-1} \gamma_h$, where $\Gamma_h = [\gamma(i-j)]_{i,j=1}^h$, and $\gamma_h = [\gamma(1), \gamma(2), \dots, \gamma(h)]$.

Theorem 1.33. For an AR(p) process, the sample PACF values at lags greater than p are approximately independent $N(0, \frac{1}{n})$ random variables. Thus, if we have a sample PACF satisfying

$$|\hat{\alpha}(h)| > \frac{1.96}{\sqrt{n}} \tag{1.59}$$

for $0 \le h \le p$ and

$$|\hat{\alpha}(h)| < \frac{1.96}{\sqrt{n}} \tag{1.60}$$

for h > p, this suggests an AR(p) model for the data.

Theorem 1.34 (PACF summary). For an AR(p) process X_t , the PACF $\alpha(\cdot)$ has the properties that $\alpha(p) = \phi_p$, and $\alpha(h) = 0$ for h > p. For h < p we can compute numerically from the expression that $\mathbf{E}_h = \Gamma_h^{-1} \mathbf{fl}_h$.

1.5.2 Forecasting ARMA Processes

For the causal ARMA(p, q) process

$$\phi(B)X_t = \theta(B)Z_t, Z_t \sim WN(0, \sigma^2)$$
(1.61)

we can avoid using the full innovations algorithm.

If we apply the algorithm to the transformed process W_t given by

$$W_t = \begin{cases} \frac{1}{\sigma} X_t & t = 1, \dots, m \\ \frac{1}{\sigma} \phi(B) X_t & t > m \end{cases}$$
 (1.62)

where $m = \max(p, q)$.

For notational convenience, take $\theta_0 = 1$, $\theta_j = 0$ for j > q.

Lemma 1.35. The autocovariances $\kappa(i,j) = \mathbb{E}(W_i W_j)$ are found from

$$\kappa(i,j) = \begin{cases} \sigma^2 \gamma_X(i-j) & 1 \leq i,j \leq m \\ \sigma^2 (\gamma_X(i-j) - \sum_{r=1}^p \phi_r \gamma_X(r-|i-j|)) & \min(i,j) \leq m < \max(i,j) \leq 2m \\ \sum_{r=0}^q \theta_r \theta_{r+|i-j|} & \min(i,j) > m \\ 0 & \text{otherwise} \end{cases}$$

$$(1.63)$$

Applying the innovations algorithm to the process W_t , we obtain

$$\hat{W}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} (W_{n+1-j} - \hat{W}_{n+1-j}) & 1 \le n < m \\ \sum_{j=1}^{q} \theta_{nj} (W_{n+1-j} - \hat{W}_{n+1-j}) & n \ge m \end{cases}$$
(1.64)

where the coefficients θ_{nj} and MSE $r_n = \mathbb{E}((W_{n+1} - \hat{W}_{n+1})^2)$ are found recursively using the innovations algorithm.

Since the equations (1.62) allow us to write X_n as a linear combination of W_j , $1 \leq j \leq n$, and conversely, each W_n , $n \geq 1$ to be written as a linear combination of X_i , $1 \le j \le n$. Thus the best linear predictor of the random variable Y in terms of $\{1, X_1, \dots, X_n\}$ is the same as the best linear predictor of Y in terms of $\{1, W_1, \dots, W_n\}$. Thus, by linearity of \hat{P}_n , we have

$$\hat{W}_{t} = \begin{cases} \frac{1}{\sigma} \hat{X}_{t} & t = 1, \dots, m \\ \frac{1}{\sigma} (\hat{X}_{t} - \phi_{1} X_{t-1} - \dots - \phi_{p} X_{t-p}) & t > m \end{cases}$$
 (1.65)

which shows that

$$X_t - \hat{X}_t = \sigma(W_t - \hat{W}_t) \tag{1.66}$$

Substituting into (1.63) and (1.64), we obtain

$$\hat{X}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j}) & 1 \le n < m \\ \phi_1 X_n + \dots + \phi_p X_{n+1-p} + \sum_{j=1}^{q} \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j}) & n \ge m \\ & (1.67) \end{cases}$$

and

$$\mathbb{E}\left((X_{n+1} - \hat{X}_{n+1})^2\right) = \sigma^2 \mathbb{E}\left((W_{n+1} - \hat{W}_{n+1})^2\right) = \sigma^2 r_n$$
 (1.68)

where θ_{nj} and r_n are found using the innovation algorithm.

1.6 Estimation of ARMA Processes

1.6.1 Yule-Walker Equations

Consider estimating a causal AR(p) process. We can write

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$$
 (1.69)

where $\sum_{j=0}^{\infty} \psi_j z^j = \frac{1}{\phi(z)}$ for $z \leq 1$.

Multiplying each side by Z_{t-j} , and taking expectations, we obtain the Yule-Walker equations

$$\Gamma_p \mathbf{C} = \mathbf{f} \mathbf{l}_p \tag{1.70}$$

and
$$\sigma^2 = \gamma(0) - \langle \mathbf{C}, \mathbf{fl}_p \rangle$$
 where $\Gamma_p = [\gamma(i-j)]_{i,j=1}^p$ and $\mathbf{fl}_p = (\gamma(1), \gamma(2), \dots, \gamma(p))$.

If we replace the covariances by the sample covariances $\hat{\gamma}(j)$, we obtain a set of equations for the so-called Yule-Walker estimators $\hat{\mathbf{C}}$ and $\hat{\sigma}^2$, given by

$$\hat{\Gamma}_p \hat{\mathbf{E}} = \hat{\mathbf{f}} \mathbf{l}_p \tag{1.71}$$

and
$$\hat{\sigma}^2 = \hat{\gamma}(0) - \left\langle \hat{\mathbf{C}}, \hat{\mathbf{f}} \mathbf{l}_p \right\rangle$$

Theorem 1.36. If X_t is the causal AR(p) process and $\hat{\mathbf{E}}$ is the Yule-Walker estimator of \mathbf{E} , then

$$n^{\frac{1}{2}}(\hat{\mathbf{G}} - \mathbf{G}) \stackrel{d}{\to} N(0, \sigma^2 \Gamma_p^{-1})$$
 (1.72)

Moreover, $\hat{\sigma}^2 \stackrel{p}{\rightarrow} \sigma^2$.

Theorem 1.37. If X_t is a causal AR(p) process and $\hat{\mathbf{C}}_m$ is the Yule-Walker estimate of order m > p, then

$$n^{\frac{1}{2}}(\hat{\mathbf{E}}_m - \mathbf{E}_m) \stackrel{d}{\to} N(0, \sigma^2 \Gamma_m^{-1})$$
 (1.73)

where $\hat{\mathbf{C}}_m$ is the coefficient vector of the best linear predictor $\langle \mathbf{C}_m, \mathbf{X}_m \rangle$ of X_{m+1} based on X_m, \ldots, X_1 . So $\mathbf{C}_m = R_m^{-1} \mathbf{z}_m$. In particular, for m > p,

$$n^{\frac{1}{2}}\hat{\phi}_{mm} \stackrel{d}{\to} N(0,1) \tag{1.74}$$

Theorem 1.38 (Durbin-Levinson Algorithm for AR models). Consider fitting an AR(m) process

$$X_{t} - \hat{\theta}_{m1} X_{t-1} - \dots - \hat{\theta}_{mm} X_{t-m} = Z_{t}$$
 (1.75)

with $Z_t \sim WN(0, \hat{v}_m)$.

If $\hat{\gamma}(0) > 0$, then the fitted autoregressive models for m = 1, 2, ..., n-1can be determined recursively from the relations

$$\hat{\phi}_{11} = \hat{\rho}(1) \tag{1.76}$$

$$\hat{v}_1 = \hat{\gamma}(0)(1 - \hat{\rho}^2)(1) \tag{1.77}$$

$$\hat{\phi}_{mm} = \frac{\hat{\gamma}(m) - \sum_{j=1}^{m-1} \hat{\phi}_{m-1,j} \hat{\gamma}(m-j)}{\hat{v}_{m-1}}$$
(1.78)

$$\hat{v}_m = \hat{v}_{m-1} (1 - \hat{\phi}_{mm}^2) \tag{1.80}$$

Theorem 1.39 (Confidence intervals for AR(p) estimation). *Under the* assumption that the order p of the fitted model is the correct value, for large sample-size n, the region

$$\{\mathbf{C} \in \mathbb{R}^p | (\mathbf{C} - \hat{\phi}_p)' \hat{\Gamma}_p (\mathbf{C} - \hat{\mathbf{C}}_p) \le \frac{1}{n} \hat{\sigma}_p \chi_{1-\alpha}^2(p) \}$$
 (1.81)

contains \mathbf{G}_p with probability close to $1 - \alpha$ where $\chi^2_{1-\alpha}(p)$ is the $(1 - \alpha)$ quantile of the chi-squared distribution with p degrees of freedom.

Similarly, if $\Phi_{1-\alpha}$ is the $(1-\alpha)$ quantile of the standard normal distribution and \hat{v}_{jj} is the j-th diagonal element of $\hat{v}_p\hat{\Gamma}_p^{-1}$, then for large n

$$\{\hat{\phi}_{pj} \pm \Phi_{1-\frac{\alpha}{2}} \frac{1}{n^{\frac{1}{2}}} \hat{v}_{jj}^{\frac{1}{2}}\}$$
 (1.82)

contains ϕ_{pj} with probability close to $(1 - \alpha)$.

1.6.2 Estimation for Moving Average Processes Using the Innovations Algorithm

Consider estimating

$$X_t = Z_t + \hat{\theta}_{m1} Z_{t-1} + \dots + \hat{\theta}_{mm} Z_{t-m}$$
 (1.83)

with $Z_t \sim WN(0, \hat{v}_m)$.

Theorem 1.40. We can apply the innovation estimates by applying the recursive relations

$$\hat{v}_0 = \hat{\gamma}(0) \tag{1.84}$$

$$\hat{\theta}_{m,m-k} = \frac{1}{\hat{v}_k} (\hat{\gamma}(m-k) - \sum_{j=0}^{k-1} \hat{\theta}_{m,m-j} \hat{\theta}_{k,k-j} \hat{v}_j)$$
 (1.85)

for k = 0, ..., m - 1, and

$$\hat{v}_m = \hat{\gamma}(0) - \sum_{j=0}^{m-1} \hat{\theta}_{m,m-j}^2 \hat{v}_j. \tag{1.86}$$

Theorem 1.41. Let X_t be the causal invertible ARMA process $\phi(B)X_t = \theta(B)Z_t$ with $Z_t \sim WN(0, \sigma^2)$, $\mathbb{E}(Z_t^4) < \infty$, and let $\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\theta(z)}{\phi(z)}$ for $|z| \leq 1$, and $\psi_0 = 1$ and $\psi_j = 0$ for j < 0.

Then for any sequence of positive integers m_n , such that m < n, $m \to \infty$, and $m = o(n^{\frac{1}{3}})$ as $n \to \infty$, we have for each k,

$$\frac{n^{\frac{1}{2}}}{(\hat{\theta}_{m1} - \psi_1, \dots, \hat{\theta}_{mk} - \psi_k)} \xrightarrow{d} N(0, A)$$
 (1.87)

where $A = [a_{ij}]_{i,j=1}^k$ and

$$a_{ij} = \sum_{r=1}^{\min(i,j)} \psi_{i-r} \psi_{j-r}$$
 (1.88)

and

$$\hat{v}_m \stackrel{p}{\to} \sigma^2. \tag{1.89}$$

Remark 1.42. Note that for the AR(p) process, the Yule-Walker estimator is a consistent estimator of \mathbf{E}_p . However, for an MA(q) process, the estimator \hat{q} is not consistent for the true parameter vector as $n \to \infty$. For consistency, it is necessary to use the estimators with m satisfying the conditions given

in Theorem 1.41.

Theorem 1.43 (Asymptotic confidence regions for the \hat{q}).

$$\{\theta \in R | |\theta - \hat{\theta}_{mj}| \le \Phi_{1-\frac{\alpha}{2}} \frac{1}{n^{\frac{1}{2}}} (\sum_{k=0}^{j-1} \hat{\theta}_{mk}^2)^{\frac{1}{2}} \}$$
 (1.90)

is an $(1 - \alpha)$ confidence interval for θ_{mi} .

Maximum Likelihood Estimation

Consider X_t a gaussian time series with zero mean and autocovariance function $\kappa(i,j) = \mathbb{E}(X_iX_j)$. Let $\hat{X}_j = P_{j-1}X_j$. Let Γ_n be the covariance matrix and assume Γ_n is nonsingular. The likelihood of X_n is

$$L(\Gamma_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\det \Gamma_n)^{\frac{1}{2}}} \exp(-\frac{1}{2} \mathbf{X}_n' \Gamma_n^{-1} \mathbf{X}_n)$$
 (1.91)

Theorem 1.44. The likelihood of the vector \mathbf{X}_n reduces to

$$L(\Gamma_n) = \frac{1}{\sqrt{(2\pi)^n \prod_{i=0}^{n-1} r_i}} \exp(-\frac{1}{2} \sum_{j=1}^n \frac{(X_j - \hat{X}_j)^2}{r_{j-1}})$$
(1.92)

Remark 1.45. Even if X_t is not Gaussian, the large sample estimates are the same for $Z_t \sim IID(0, \sigma^2)$, regardless of whether or not Z_t is Gaussian.

Theorem 1.46 (Maximum Likelihood Estimators for ARMA processes).

$$\hat{\sigma}^2 = \frac{1}{n} S(\hat{\mathbf{C}}, \hat{\mathbf{C}}) \tag{1.93}$$

where $\hat{\mathbf{C}}$, are the values of \mathbf{C} , that minimize

$$\ell(\mathbf{CE}, \hat{}) = \ln(\frac{1}{n}S(\hat{}, \hat{})) + \frac{1}{n}\sum_{j=0}^{n-1}\ln r_j$$
 (1.94)

and

$$S(\hat{\mathbf{C}}, \hat{\mathbf{c}}) = \sum_{j=1}^{n} \frac{(X_j - \hat{X}_j)^2}{r_{j-1}}$$
 (1.95)

Theorem 1.47 (Asyptotic Distribution of Maximum Likelihood Esti-

mators). For a large sample from an ARMA(p,q) process,

$$\hat{\mathbf{f}} = N(\mathbf{f}, \frac{1}{n}V\mathbf{f}) \tag{1.96}$$

where

$$V(\mathbf{fi}) = \sigma^2 \begin{bmatrix} \mathbb{E}(U_t U_t') & \mathbb{E}(U_t V_t') \\ \mathbb{E}(V_t U_t') & \mathbb{E}(V_t V_t') \end{bmatrix}^{-1}$$
(1.97)

and U_t are the autoregressive process $\phi(B)U_t = Z_t$ and $\theta(B)V_t = Z_t$.

Note that for
$$p=0$$
, $V(\mathbf{fi})=\sigma^2[\mathbb{E}(V_tV_t')]^{-1}$, and for $q=0$, $V(\mathbf{fi})=\sigma^2[\mathbb{E}(U_tU_t')]^{-1}$.

1.6.4 Order Selection

Definition 1.48 (Kullback-Leibler divergence). The Kullback-Leibler (KL) divergence between $f(\cdot; \psi)$ and $f(\cdot; \theta)$ is defined as

$$d(\psi|\theta) = \Delta(\psi|\theta) - \Delta(\theta|\theta) \tag{1.98}$$

where

$$\Delta(\psi|\theta) = \mathbb{E}_{\theta}(-2\ln f(X;\psi)) \tag{1.99}$$

is the Kullback-Leibler index of $f(\cdot; \psi)$ relative to $f(\cdot; \theta)$.

Theorem 1.49 (AICC of ARMA(p, q) process).

$$AICC(\mathbf{fi}) = -2 \ln L_X(\mathbf{fi}, \frac{S_X(\beta)}{n}) + \frac{2(p+q+1)n}{n-p-q-2}$$
(1.100)

Theorem 1.50 (AIC of ARMA(p, q) process).

$$AIC(\mathbf{fi}) = -2 \ln L_X(\mathbf{fi}, \frac{S_X(\beta)}{n}) + 2(p+q+1)$$
 (1.101)

Theorem 1.51 (BIC of ARMA(p, q) process).

$$BIC(\mathbf{fi}) = (n - p - q) \ln \frac{n\hat{\sigma}^2}{n - p - q} + n(1 + \ln \sqrt{2\pi}) + (p + q) \ln \frac{\sum_{t=1}^{n} X_t^2 - n\hat{\sigma}^2}{p + q}$$
(1.102)

where $\hat{\sigma}^2$ is the MLE estimate of the white noise variance.

1.7 Spectral Analysis

Let X_t be a zero-mean stationary time series with autocovariance function $\gamma(\cdot)$ satisfying $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$.

Definition 1.52. The spectral density of X_t is the function $f(\cdot)$ defined by

$$f(\lambda) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} e^{-ih\lambda} y(h)$$
 (1.103)

The summability implies that the series converges absolutely.

Theorem 1.53. (*i*) *f is even*

(ii) $f(\lambda) \geq 0$ for all $\lambda \in (-\pi, \pi]$.

(iii)
$$\gamma(k) = \int_{-\pi}^{\pi} e^{-k\lambda} f(\lambda) d\lambda = \int_{-\pi}^{\pi} \cos(k\lambda) f(\lambda) d\lambda$$
.

Definition 1.54. A function f is the **spectral density** of a stationary time series X_t with autocovariance function $\gamma(\cdot)$ if

(i)
$$f(\lambda) \ge 0$$
 for all $\lambda \in (0, \pi]$,

(ii)
$$\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda$$
 for all integers h .

Lemma 1.55. If f and g are two spectral density corresponding to the autocovariance function γ , then f and g have the same Fourier coefficients and hence are equal.

Theorem 1.56. A real-valued function f defined on $(-\pi, \pi]$ is the spectral density of a stationary process if and only if

(i)
$$f(\lambda) = f(-\lambda)$$
,

(ii)
$$f(\lambda) \geq 0$$

(iii)
$$\int_{-\pi}^{\pi} f(\lambda) d\lambda < \infty$$
.

Theorem 1.57. An absolutely summable function $\gamma(\cdot)$ is the autocovariance function of a stationary time series if and only if it is even and

$$f(\lambda) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} e^{-ih\lambda} \gamma(h) \ge 0$$
 (1.104)

for all $\lambda \in (-\pi, \pi]$, in which case $f(\cdot)$ is the spectral density of $\gamma(\cdot)$.

Theorem 1.58 (Spectral Representation of the ACVF). A function $\gamma(\cdot)$ defined on the integers is the ACVF of a stationary time series if and only if there exists a right-continuous, nondecreasing, bounded function F on $[-\pi, \pi]$ with $F(-\pi) = 0$ such that

$$\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} dF(\lambda) \tag{1.105}$$

for all integers h.

Remark 1.59. The function F is a generalized distribution function on $[-\pi, \pi]$ in the sense that $G(\lambda) = \frac{F(\lambda)}{F(\pi)}$ is a probability distribution function on $[-\pi, \pi]$. Note that since $F(\pi) = \gamma(0) = \mathbb{V}(X_1)$, the ACF of X_t has the spectral representation function

$$\rho(h) = \int_{-\pi}^{\pi} e^{ih\lambda} dG(\lambda) \tag{1.106}$$

The function F is called the spectral distribution function of $\gamma(\cdot)$. If $F(\lambda)$ can be expressed as $F(\lambda) = \int_{-\pi}^{\lambda} f(y) dy$ for all $\lambda \in [-\pi, \pi]$, then f is the spectral density function and the time series is said to have a continuous spectrum. If F is a discrete function, then the time series is said to have a discrete spectrum.

Theorem 1.60. A complex valued function $\gamma(\cdot)$ is the autocovariance function of a stationary process X_t if and only if either

- (i) $\gamma(h) = \int_{-\pi}^{\pi} e^{-ihv} dF(v)$ for all $h = 0, \pm 1, \dots$ where F is a right-continuous, non-decreasing, bounded function on $[-\pi, \pi]$ with $F(-\pi) = 0$, or
- (ii) $\sum_{i,j=1}^{n} a_i \gamma(i-j) \overline{a}_j \ge 0$ for all positive integers n and all $a = (a_1, \ldots, a_n \in \mathbb{C}^n)$.

1.7.1 The Spectral Density of an ARMA Process

Theorem 1.61. If Y_t is any zero-mean, possibly complex-valued stationary process with spectral distribution function $F_Y(\cdot)$ and X_t is the process $X_t = \sum_{j=-\infty}^{\infty} \psi_j Y_{t-j}$ where $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, then X_t is stationary with spectral distribution function $F_X(\lambda) = \int_{-\pi,\lambda} |\sum_{j=-\infty}^{\infty} \psi_j e^{-ijv}|^2 dF_Y(v)$ for $-\pi \le \lambda \le \pi$.

If Y_t has a spectral density $f_Y(\cdot)$, then X_t has a spectral density $f_X(\cdot)$ given by $f_X(\lambda) = |\Psi(e^{-i\lambda})|^2 f_Y(\lambda)$ where $\Psi(e^{-i\lambda}) = \sum_{i=-\infty}^{\infty} \psi_i e^{-ij\lambda}$.

Theorem 1.62. Let X_t be an ARMA(p,q) process, not necessarily causal or invertible satisfying $\phi(B)X_t = \theta(B)Z_t, Z_t \sim WN(0, \sigma^2)$ where $\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p$ and $\theta(z) = 1 + \theta_1 z + \cdots + \theta_a z^q$ have no common zeroes and $\phi(z)$ has no zeroes on the unit circle. Then X_t has spectral density

$$f_X(\lambda) = \frac{\sigma^2}{2\pi} \frac{|\theta(e^{-i\lambda})|^2}{||\phi(e^{-i\lambda})|^2}$$
(1.107)

for $-\pi < \lambda < \pi$.

Theorem 1.63. The spectral density of the white noise process is constant, $f(\lambda) = \frac{\sigma^2}{2\pi}$.

The Periodogram

Definition 1.64. The periodogram of (x_1, \ldots, x_n) is the function

$$I_n(\lambda) = \frac{1}{n} |\sum_{t=1}^n x_t e^{-it\lambda}|^2$$
 (1.108)

Theorem 1.65. If x_1, \ldots, x_n are any real numbers and ω_k is any of the nonzero Fourier Frequencies $\frac{2\pi k}{n}$ in $(-\pi,\pi]$, then $I_n(\omega_k) = \sum_{|h| < n} \hat{\gamma}(h) e^{-ih\omega_k}$ where $\hat{\gamma}(h)$ is the sample ACVF of x_1, \ldots, x_n .

Theorem 1.66. Let X_t be the linear process $X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$, $Z_t \sim IID(0,\sigma^2)$, with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$. Let $I_n(\lambda)$ be the periodogram of X_1, \ldots, X_n , and let $f(\lambda)$ be the spectral density of X_t .

(i) If $f(\lambda) > 0$ for all $\lambda \in [-\pi, \pi]$ and if $0 < \lambda_1 < \cdots < \lambda_m < \pi$, then the random vector $(I_n(\lambda_1), \ldots, I_n(\lambda_m))$ converges in distribution to a vector of independent and exponentially distributed random variables, the i-th component which has mean $2\pi f(\lambda_i)$, i = 1..., m.

(ii) If
$$\sum_{i=-\infty}^{\infty} |\psi_i| |j|^{\frac{1}{2}} < \infty$$
, $\mathbb{E}(Z_1^4) = \nu \sigma^4 < \infty$, $\omega_i = \frac{2\pi j}{n} \geq 0$, and

$$\omega_k = \frac{2\pi k}{n} \geq 0$$
, then

$$Cov(I_{n}(\omega_{j}), I_{n}(\omega_{k}), -NoValue-) = \begin{cases} 2(2\pi)^{2} f^{2}(\omega_{j}) + O(n^{-\frac{1}{2}}) & \omega_{j} = \omega_{k} = \{0, \pi\} \\ (2\pi)^{2} f^{2}(\omega_{j}) + O(n^{-\frac{1}{2}}) & 0 < \omega_{j} = \omega_{k} < \pi \\ O(n^{-1}) & \omega_{j} \neq \omega_{k} \end{cases}$$
(1.109)

Definition 1.67. The estimator $\hat{f}(\omega) = \hat{f}(g(n,\omega))$ with $\hat{f}(\omega_j)$ defined by $\frac{1}{2\pi} \sum_{|k| \le m_n} W_n(k) I_n(w_{j+k})$ with $m \to \infty$, $\frac{m}{n} \to 0$, $W_n(k) = W_n(-k)$, $W_n(k) \ge 0$ for all k, and $\sum_{|k| \le m} W_n(k) = 1$, and $\sum_{|k|} W_n^2(k) \to 0$ as $n \to \infty$ is called a **discrete spectral average estimator** of f(w).

Theorem 1.68. Let X_t be the linear process $X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$, $Z_t \sim IID(0,\sigma^2)$, with $\sum_{j=-\infty}^{\infty} |\psi_j||j|^{\frac{1}{2}} < \infty$ and $\mathbb{E}(Z_1^4) < \infty$. If \hat{f} is a discrete spectral average estimator of the spectral density f, then for $\lambda, \omega \in [0,\pi]$,

(i)
$$\lim_{n\to\infty} \mathbb{E}(\hat{f}(\omega)) = f(\omega)$$

(ii)

$$\lim_{n\to\infty} \frac{1}{\sum_{|j|\leq m} W_n^2(j)} Cov(\hat{f}(\omega), \hat{f}(\lambda), -NoValue-) = \begin{cases} 2f^2(\omega) & w = \lambda = \{0, \pi\} \\ f^2(\omega) & 0 < \omega = \lambda < \pi \\ 0 & \omega \neq \lambda. \end{cases}$$
(1.110)

Bibliography

Peter J Brockwell and Richard A Davis. *Introduction to time series and forecasting*. Taylor & Francis US, 2002.

Peter J Brockwell and Richard A Davis. *Time series: theory and methods*. Springer, 2009.