
A N D R E W T U L L O C H

S TAT I S T I C A L T H E O R Y

T R I N I T Y C O L L E G E

T H E U N I V E R S I T Y O F C A M B R I D G E





Contents

1 Introduction 5

1.1 Asymptotic Statistics 6

1.2 Statistical Inference 6

2 Stochastic Convergence Concepts 7

2.1 Uniform Laws of Large Numbers 9

3 Parametric Statistical Models 11

3.1 Consistency of M-Estimators 12

3.2 Verifying uniform convergence 15

3.3 Asymptotic Inference based on the MLE 18

3.4 Some Ideas from LeCam Theory 21

4 Bayesian Inference 25

5 Gaussian Linear Model 27

5.1 Over-fitting a linear model 29



4 andrew tulloch

6 High-Dimensional Statistics 31

6.1 Compressed Sensing and the Restricted Isometry Property 37

6.2 Inference with the LASSO 45

7 Conclusion 47

7.1 Outlook on Nonparameterics 47

7.2 Relevant previous Tripos questions 47

8 Bibliography 49



1

Introduction

Consider observations X1, . . . , Xn are copies of a random variable

(r.v.) with distribution

F(t) = P(X ≤ t) , t ∈ R.

Definition 1.1. A statistical model is a family of candidate distribu-

tions

PΘ = {Pθ |θ ∈ Θ}

where Θ is a parameter space.

Example 1.2 (Linear Regression). Consider

Y = XΘ + ε (1.1)

X is our design matrix, Xi are our explanatory variables, Y is our response,

ε is our measurement error (e.g. ε N(0, σ2)).

Example 1.3 (Nonlinear regression).

Y = g(X, Θ) + ε (1.2)

Example 1.4 (High dimensional linear model).

Y = XΘ + ε (1.3)

with Θ being sparse.

If X has some “properties” (restricted isometry property), then “miracle

happens”.
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1.1 Asymptotic Statistics

Investigate statistical problems where the sample size n is large (n →
∞).

(i) Quick intuitions (about the complexity of Θ.

(ii) Large sample approximation can often proven to be good (concen-

tration of measure).

(iii) Nice mathematics.

(iv) For n finite, Θ can be useless.

(v) Does not consider computation cost.

1.2 Statistical Inference

(i) Estimation: construct θ̂n − θ̂(X1, . . . , Xn), that estimates (approxi-

mates) θ well when Xi ∼ Pθ .

(ii) Hypothesis testing: H0 : θ = θ0 vs H1 : θ 6= θ0. Find test/decision

rule ψn = ψ(X1, . . . , Xn) such that ψn = 0 if H0 is true.

(iii) Confidence Sets: Find Cn = C(X1, . . . , Xn, α) ⊆ Θ, 0 ≤ α ≤ 1

such that Pθ(θ ∈ Cn) = 1− α for all n ∈ N. This is uncertainty

quantification.
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Stochastic Convergence Concepts

Definition 2.1 (Random Variable). A random variable is a (measur-

able) mapping

X : (Ω,A, µ)→ R. (2.1)

The distribution function is defined by

F(t) = P(X ≤ t) = µ(w ∈ Ω|X(w) ≤ t), t ∈ R (2.2)

where P = µ ◦ X−1 is the law of X.

A random vector X is a vector of random variables with joint dis-

tribution

F(t) = P(X ≤ t) = P(Xi ≤ ti, 1 ≤ i ≤ n) (2.3)

Definition 2.2 (Convergence almost surely). A sequence Xn, n ∈ N of

random variables converges almost surely to a random variable X if

P(Xn → X) = µ(ω ∈ Ω|Xn(ω)→ X(ω)) = 1 (2.4)

We say that Xn
as→ X.

Definition 2.3 (Convergence in probability). Xn
p→ X (in probability)

if for all ε > 0,

P(|Xn − X) > ε)→ 0 (2.5)

as n → ∞. For random vectors, we define analogously with taking

the norm in Rn.

Definition 2.4 (Convergence in distribution). Xn
d→ X or Xn con-
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verges to X in distribution if

P(Xn ≤ t)→ P(X ≤ t) (2.6)

whenever t 7→ P(X ≤ t) is continuous.

Proposition 2.5. Let (Xn, n ∈N), X taking values in X ⊆ Rd.

(i)

Xn
as→ X ⇒ Xn

p→ X ⇒ Xn
d→ X (2.7)

(ii) If Xn → X in any mode, and if g : X → Rd is continuous, then

g(Xn)→ g(X)in the same mode.

(iii) Slutsky’s lemma If Xn
d→ X and Yn

d→ c (a constant). Then

(i)

Yn
p→ c (2.8)

(ii)

Xn + Yn
d→ X + c (2.9)

(iii)

XnYn
d→ cX (2.10)

where Yn ∈ R.

(iv)

XnY−1
n

d→ c−1X (2.11)

where Yn ∈ R, c 6= 0.

(iv) If (An, n ∈ N) are random matrices with (An)ij
p→ Aij for all i, j and

Xn
d→ X, then AnXn

d→ AX, and if A is invertible, A−1
n Xn

d→ A−1X,

where A = (Aij).

Proof. Exercise.

Some key results from probability theory are statements about

1
n

n

∑
i=1

Xi (2.12)

where the X1, . . . , Xn form an infinite sequence of IID copies of a

fixed random variable X ∼ P. The (X1, X2, . . . ) can be accommo-
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dated as the coordinate projections of the product probability space

(RN, BN, PN) (2.13)

or, if the Xi’s are random vectors in Rd, then

((Rd)N, (Bd)N, PN) (2.14)

where Pr = PN is the product space measure associated to the

sequence (X1, . . . , Xn, . . . ).

Theorem 2.6 (Law of Large Numbers). let X1, . . . , Xn be IID copies of

X P such that E(|Xi|) < ∞, then

1
n

n

∑
i=1

Xi
as→ E(X) (2.15)

Theorem 2.7 (Central limit theorem). Let X1, . . . , Xn be IID copies of

X ∼ P on R with V(X) = σ2 < ∞. Then

√
n

(
1
n

n

∑
i=1

Xi −E(X)

)
d→ N(0, σ2) (2.16)

In the multivariate case, where X ∼ P on Rd with the covariance of X as

Σ, then
√

n

(
1
n

n

∑
i=1

Xi −E(X)

)
d→ N(0, Σ) (2.17)

Assuming that the random variables Xi are bounded, say |Xi| ≤ 1,

the central limit theorem is in fact a non-asymptotic phenomena (at

least for tail events), since by Hoeffding’s inequality, for all n ∈ N

and u > 0,

P

(
√

n

∣∣∣∣∣ 1n n

∑
i=1

Xi −E(X)

∣∣∣∣∣ > u

)
≤ 2e−

u2
2 (2.18)

which compares “well” to the Gaussian tail Φ(u) = 1
n e−

u2
2 .

2.1 Uniform Laws of Large Numbers

Consider X1, X2, . . . , Xn IID from law P on T (e.g. Rd), and let h :

T → R such that E(|h(X)|) < ∞. Then the h(Xi)’s are also IID, so by
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the law of large numbers,

1
n

n

∑
i=1

h(Xi)−E(h(X))
as→ 0 (2.19)

For finitely many h’s, say hi, the exceptional set Am such that the

m’th LLN 1
n ∑n

i=1 hm(Xi)−E(hm(X))
as→ 0 fails has probability zero,

and clearly by the union bound

P
(
∪M

m=1 Am

)
≤

M

∑
m=1

P(Am) = 0 (2.20)

and so clearly

max
m=1,...,M

∣∣∣∣∣∑1
n

n

∑
i=1

hm(Xi)−E(hm(X))

∣∣∣∣∣ as→ 0 (2.21)

as n→ ∞.

For a general class H of measurable functions T → R, we say that

the brackets bhj, hje, j = 1, . . . , N cover H if for all h ∈ H, there exists

some j such that bhj(x) ≤ h(x) ≤ hj(x)e for all x ∈ T.

Proposition 2.8. Suppose H is (for all ε > 0), covered by brackets

bhj, hje, i = 1, . . . , Nε such that

E
(
|hj(X)e|

)
< ∞, E

(
|bhj(X)|

)
< ∞, (2.22)

and

E
(
|bhj(X)− hj(X)e|

)
< ε. (2.23)

Then

sup
h∈H

∣∣∣∣∣ 1n n

∑
i=1

h(Xi)−E(h(X))

∣∣∣∣∣ as→ 0 (2.24)

as n→ ∞.

Proof. Let ε > 0 be given. By the law of large numbers for finitely

many hi’s, we have that for all n ≥ N(ε, ω),

(2.25)
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Parametric Statistical Models

Let Y1, . . . , Yn observations.

Example 3.1. Y1 = (Zi, Xi) where the Zi’s are response variables, and the

covariates Xi are related to Zi by the regression relationship Zi = g(Xi, θ) +

εi for θ ∈ Θ ⊆ Rp, εi IID with E(εi) = 0, and g : X×Θ→ R.

A regression function (possibly non-linear) and known — for example,

g(Xi, θ) = XT
i θ, (3.1)

a linear model.

A natural way to estimate θ is by nonlinear least squares (NLS)

which finds θ̂ that minimizes

Qn(θ) =
1
n

n

∑
i=1

(Zi − g(Xi, θ))2 (3.2)

Example 3.2. We are given a model of PDF/PMF’s { f (·, θ) : θ ∈ Θ}, Θ ⊆
Rp for the distribution of a random variable Y. We view Y1, . . . , Yn as IID

copies of Y.

The likelihood function of the model is defined as

Ln(θ) = Πn
i=1 f (Yi, θ) (3.3)

The log-likelihood function ln(θ) = log Ln(θ). A maximum likelihood

estimator (MLE) is any value θ̂ = θ̂MLE ∈ Θ that maximizes Ln(θ) over
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Θ. Equivalently, we minimize

Qn(θ) = −
1
n

ln(θ) = −
1
n

n

∑
i=1

log f (Yi, θ) (3.4)

3.1 Consistency of M-Estimators

In both the examples, θ̂n is found by minimizing a random criterion

function Qn(θ) over Θ, and proved a “limiting function” Q(θ) exists,

we expect these minimizers to converge to the minimizers of Q.

Theorem 3.3. Let Θ ⊆ Rp be compact. Let Q : Θ → R be a continuous,

non-random function that has a unique minimizer θ0 ∈ Θ.

Let Qn : Θ→ R be any sequence of random functions such that

sup
θ∈Θ
|Qn(θ)−Q(θ)| p→ 0 (3.5)

as n→ ∞.

If θn is any sequence of minimizers of Qn, then θ̂n
p→ θ0 as n→ ∞.

Proof. Let ε > 0 be arbitrary. The set Θε = {θ ∈ Θ : ‖θ − θ0‖ ≥ ε} is

compact and Q is continuous on Θε, so Q attains its infimum

c(ε) = inf
θ∈Θε

Q(θ) = Q(θ̄ε) ∈ Θε > Q(θ0) (3.6)

as θ0 is the minimizer.

Pick 0 < δ(ε) < c(ε)−Q(θ0)
2 , which implies

c(ε)− δ(ε) > Q(θ0) + δ(ε) (3.7)

Define the event

An(ε) = {sup
θ∈Θ
|Qn(θ)−Q(θ)| < δ(ε)}. (3.8)
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On this event we have

inf
θ∈Θε

Qn(θ) = inf
θ∈Θε

[Qn(θ)−Q(θ) + Q(θ)]

≥ inf
θ∈Θε

Q(θ)− sup
θ∈Θ
|Qn(θ)−Q(θ)|

≥ C(ε)− δ(ε)

≥ Q(θ0) + δ(ε)

≥ Q(θ0) + δ(ε)− |Qn(θ0)−Q(θ0)|

≥ Qn(θ0)

since on An(ε), in particular |Qn(θ0)−Q(θ0)| < δ(ε).

We conclude

inf
θ:‖θ−θ0‖≥ε

Qn(θ) > Qn(θ0) (3.9)

Now suppose θ̂n ∈ Θε, then Qn(θ̂n) ≥ infθ∈Θε
Qn(θ) > Qn(θ0).

Hence, on An(ε), we have ‖θ̂n − θ0‖ < ε, An(ε) ⊆ {‖θ̂n − θ0‖ <

ε}, so since by hypothesis P(An(ε)) → 1 for all ε > 0, we see

P
(
‖θ̂n − θ0‖ < ε

)
→ 1, as P

(
‖θ̂n − θ0‖ ≥ ε

)
→ 0 as n → ∞. Since

ε > 0 was arbitrary, the result follows.

Remark 3.4. Uniform convergence of Qn → Q is necessary. In fact, none

of the conditions can be relaxed.

Exercise 3.5. (i) What is Q in Examples 3.1, 3.2?

(ii) What is Θ0?

(iii) When does uniform convergence occur?

Example 3.6. Let Y = (Z, X) such that Z = g(X, θ0) + ε, where

E(ε|X) = 0, θ0 is the “true value”, and based on iid observations

Y1, . . . , Yn, we minimize

Qn(θ) =
1
n

n

∑
i=1

(Zi − g(Xi, θ))2 (3.10)

over Θ. We expect

Q(θ) = Eθ0

(
(Z− g(X, θ))2

)
(3.11)
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Inserting the model equation

Q(θ) = Eθ0

(
(g(X1, θ0)− g(X, θ) + ε)2

)
= E(g(X, θ0)− g(X, θ))2 +E

(
ε2
)

(3.12)

Hence Q(θ) is minimized at θ0 if the regression parameterization is

identifiable, that is

θ = θ′ ⇐⇒ g(·, θ) = g(·, θ′) (3.13)

PX almost surely.

Example 3.7. Let Y1, . . . , Yn be iid copies of Y, and we maintain a para-

metric model

{ f (·, θ) : θ ∈ Θ} (3.14)

of PDFs/PMFs and the MLE is found by minimizing

Qn(θ) = −
1
n

n

∑
i=1

log f (Yi, θ) (3.15)

By the law of large numbers, assuming f (y, θ) > 0 for all y, θ and

Eθ0(| log f (Y, θ)|) < ∞ (3.16)

where Y is assumed to be distributed as f (·, θ0), then the limiting criterion

function is

Q(θ) = −Eθ0(log f (Y, θ)) (3.17)

Then

Q(θ0)−Q(θ) = Eθ0 log f (Y, θ)−Eθ0 − log f (Y, θ0) (3.18)

= Eθ0

(
log

f (Y, θ)

f (Y, θ0)

)
(3.19)

≤ log Eθ0

(
f (Y, θ)

f (Y, θ0)

)
(3.20)

= log
∫ f (y, θ)

f (y, θ0)
f (y, θ0) dy (3.21)

= log 1 (3.22)

= 0 (3.23)
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or in other words,

Q(θ0) ≤ Q(θ)∀θ ∈ Θ (3.24)

Equality in Jensen’s inequality can only occur when

f (·, θ)

f (·, θ0)
= C ∈ R (3.25)

so since
∫

f (y, θ)dy = 1, we see C = 1, and hence if the model is

identifiable in the sense that θ = θ′ ⇐⇒ f (·, θ) = f (·, θ′) for all

θ, θ′ ∈ Θ, then the value θ0 that minimizes θ0 is unique.

3.2 Verifying uniform convergence

Proposition 3.8. Let Θ be compact in Rp, and let X ⊆ Rd and consider

observing X1, . . . , Xn iid from X ∼ P on X. Let q : X ×Θ → R that is

continuous in θ for all x and measurable in x for all θ ⊆ Θ.

Assume

E

(
sup
θ∈Θ
|q(X, θ)|

)
< ∞ (3.26)

Then

sup
θ∈Θ
| 1
n

q(Xi, θ)−E(q(X, θ)) | as→ 0 (3.27)

as n→ ∞

Proof. We apply the uniform law of large numbers from Proposition

2.8 and we need to cover the set

H = {q(·, θ) : θ ∈ Θ} (3.28)

by suitable brackets.

Define open balls

B(θ, m) = {θ′ ∈ Θ : ‖θ − θ′‖ < η} (3.29)

Construct “brute-force” brackets

q(X, θ, η) = sup
θ′∈B(θ,ε)

q(X, θ′) (3.30)

q(X, θ, η) = inf
θ′∈B(θ,η)

q(X, θ′) (3.31)
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which obviously cover all the {q(·, θ′) : θ′ ∈ B(θ, η)}.
Clearly,

E
(

q(x, θ, η)
)
≤ E

(
sup
θ∈Θ
|q(X, θ)|

)
< ∞ (3.32)

by the domination condition.

By continuity and compactness, the supremum/infimum above are

attained at θ, θ ∈ Θ such that ‖θ − θ‖ ≤ η. So

|q(X, θ, η)− q(X, θ, η)| ≤ |q(X, θ, η)− q(X, θ)|+ |q(X, θ)− q(X, θ, η)|
(3.33)

which again by continuity tends to zero as η → 0.

So |q(X, θ, η)− q(X, θ, η)| → 0 as η → 0.

By the dominated convergence theorem we can integrate this limit

with respect to E, (using the dominance condition). So,

E
(
|q(X, θ, η)− q(X, θ, η)

)
→ 0 (3.34)

as η → 0.

Then for all ε > 0, there exists η = η(ε, θ) such that

E
(
|q(X, θ, η(ε, θ))− q(X, θ, η(ε, θ))|

)
< ε (3.35)

The balls {B(θ, η(ε, θ)) : θ ∈ Θ} form an open covering of Θ,

so by compactness (Heine-Borel theorem in Rp), there exists a finite

subcover of θ, say with centers θ1, . . . , θN(ε). Then the corresponding

brackets

[q
i
, qi] = [q(·, θj, η(ε, θj)), q(·, θj, η(ε, θj))] (3.36)

cover H and satisfy the conditions of Proposition 2.8

Remark 3.9. The above result is simply a law of large numbers in the

Banach space of continuous functions on Θ, and

E

(
sup
θ∈Θ
|q(X, Θ)|

)
= E(‖Z‖) < ∞ (3.37)

which is necessary for the result to hold.

Fill in missing notes from

previous lecture

Fill in missing notes from

previous lecture
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Definition 3.10. A consistent estimator θ̃ in a model { f (·, θ)|θ ∈ Θ}
is called asymptotically efficient if limn nV

(
θ̃
)
= I(θ)−1 for all

θ ∈ int(Θ) where I(θ) is the Fisher information.

Theorem 3.11. In a model satisfying Assumption B,

√
n(θ̂MLE − θ0)

d→ N(0, I(θ0)
−1) (3.38)

Proof. Let P = PN
θ0

, E = Eθ .

For `n(θ) = −Qn(θ) = 1
n log f (Yi, θ). When proving Zn

d→ Z we

may restrict to events En such that P(En)→ 1, since

‖P(Zn ≤ t)−P(Zn ≤ t, En) ‖ ≤ P(Ec
n)→ 0 (3.39)

as n → ∞. Since θ̂n
p→ θ0 as n → ∞, we can restrict to En = {θ̂n}

where K is a closed ball centered at θ0. By the assumptions, ln is C2

on U, and θ̂n is a maximizer on the open set U, so necessarily,

0 =
∂

∂θ
ln(θ)|θ=θ̂n

=
∂

∂θ
ln(θ̂n) =


∂

∂θ1
ln(θ̂n)
...

∂
∂θp

ln(θ̂n)

 (3.40)

For h : K → R and u, v ∈ K the line segment

tu + (1− t)v (3.41)

for 0 < t < 1 connection u, v does lie in the ball K by convexity, and

the mean value theorem gives (for h ∈ C1(U)),

h(u) = h(v) +
∂h
∂u

(v)T(u− v) (3.42)

where v is a mean-value on the line segment.

Applying this p-times to ∂
∂θi

`n(θ) we obtain

0 =


∂

∂θ1
`n(θ̂n)

...
∂

∂θp
`n(θ̂n)

 (3.43)

o We have Fill this inFill this in
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(An)kj =
1
n

n

∑
i=1

[
∂2

∂θk∂θj
log f (Yi, θ(j))−E

(
∂2

∂θi∂θj

)]
(3.44)

Fill in rest of proofFill in rest of proof

Remark 3.12 (Discussion of Theorem 3.11). (i) One can weaken the

conditions to θ 7→ f (·, θ) being “weakly C1”, to model the Laplace

family. For non-differentiable parameterizations, the asymptotics of the

MLE may be non-normal. For example, consider U[0, θ] with θ ∈ Θ =

(0, ∞).

(ii) When the “true” θ0 is at the boundary of the parameter space, the asymp-

totics of the MLE are also non-normal. For example, N(θ, 1), θ ∈ Θ =

[0, ∞), θ̂MLE = max(Xn, 0)

(iii) Asymptotic efficiency is an optimality criterion that is meaningful only

for “regular” estimators, that rules out the following super-efficient

estimator e.g.

θ̃ =

θ̂MLE |θ̂MLE| ≥ n−
1
4

0 otherwise
(3.45)

One shows that under Pθ , θ 6= 0, that
√

n(θ̃ − θ) =
√

n(θ̂ − θ)
d→

N(0, I(θ)−1) as n → ∞. However, under P0, one shows easily that
√

n(θ̃ − θ)
d→ 0 = N(0, 0) which strictly beats the N(0, I(0)−1)-

distribution (Hodges’ estimator).

3.3 Asymptotic Inference based on the MLE

Suppose we want a confidence interval for θj, j = 1, . . . , p. We can

write θj = eT
j θ, ej = (0, . . . , 0, 1︸︷︷︸

j-th position

, . . . , 0). By the continuous

mapping theorem, we have

√
n(θ̂j − θj) =

√
neT

j (θ̂ − θ)
d→ N(0, eT

j I(θ)−1ej) = N(0, I−1(θ)jj)

(3.46)

Suggesting that

Cn = {v ∈ R : |θ̂n,j − v| ≤
(I(θ)−1)

1
2
jj Zα

√
n

} (3.47)
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where Zα are such that P(|Z| ≤ Zα) = 1− α is a confidence interval

for θj, since

Pn
θ (θj ∈ Cn) = ¶n

θ (
√

n(I(θ)−1)
− 1

2
jj |θ̂n,j − θ| ≤ Zα)→ P(|Z| ≤ Zα) = 1− α.

(3.48)

This can only be used if I(θ) is known, otherwise I(θ) has to esti-

mated consistently.

Definition 3.13. The observed Fisher information is defined as

in(θ) =
1
n

n

∑
i=1

∂

∂θ
log f (Yi, θ)

∂

∂θ
log f (Yi, θ)T (3.49)

One shows as in the proof of Theorem 3.11 that

în = in(θ̂MLE)
p→ I(θ0) (3.50)

under Pθ0 .

Alternative, one can use

ĵn = jn(θ̂n) (3.51)

where

jn(θ) =
1
n

n

∑
i=1

∂2

∂θ∂θT log f (Yi, θ) (3.52)

which does estimate I(θ0) consistently.

To construct a confidence set for θ ∈ Θ ⊆ Rp, it is consistent to

consider the Wold-statistic

Wn(θ) = n(θ̂ − θ)T în(θ̂ − θ) (3.53)

which can be shown to have, under PN
θ to have the χ2

p distribution.

Thus

Cn = {θ ∈ Rp|Wn(t) ≤ ξα} (3.54)

where ξα are the 1− α quartiles of the χ2
p distribution, is a confidence

ellipsoid for θ of asymptotic coverage probability 1− α.

To test H0 : θ = θ0 against H1 : Θ ∈ θ\{θ0}, we can refer Wn(θ0) to

the quartiles of the χ2
p distribution, since Wn(θ0)

d→ ξ2
p under H0.



20 andrew tulloch

For such testing problems there exists an alternative approached

based on the likelihood ratio test statistic for H0 : θ ∈ Θ0 vs H1 : θ ∈
Θ\Θ0, with Θ0 ⊆ Θ as

Λn(Θ, Θ0) = 2 log
supθ∈Θ ∏n

i=1 f (Yi, θ)

supθ∈Θ0
∏n

i=1 f (Yi, θ)
(3.55)

= 2 log
∏n

i=1 f (Yi, θ̂n)

∏n
i=1 f (Yi, θ̂n,0)

(3.56)

where θ̂n is the unrestricted MLE and θ̂n,0 is the MLE restricted to H0.

Theorem 3.14 (Wilks’). If dim(θ0) = p0 < dim(Θ) = p, then

Λn(Θ, Θ0)
d→ χ2

p−p0
(3.57)

as n→ ∞.

Proof. (Only for H0 = {θ0}, dim θ0 = 0).

Recall

Qn(θ) = −
1
n

n

∑
i=1

log f (Yi, θ) = −ln(θ) (3.58)

and so

∆n(θ, θ0) = 2nQn(θ0)− 2nQn(θ̂n) (3.59)

= 2n
∂

∂θ
Qn(θ̂n)

T(θ0 − θ̂n) +
2n
2
(θ0 − θ̂n)

T ∂2

∂θ∂θT Qn(θ̄)(θ0 − θ̂n)

(3.60)

=
√

n(θ̂n − θ0)
T Ān
√

n(θ0 − θ̂n) (3.61)

= ZT
n ĀnZn (3.62)

where we then conclude that from Theorem 3 (in notes) that Zn
d→

Z ∼ N(0, I(θ0)
−1), and, as in the proof of Theorem 3, Ān

p→ I(θ0) as

n→ ∞. Rewrite this as

ZT
n I(θ0)Zn + ZT

n (Ān − I(θ0))Zn (3.63)

which by repeated applications of Slutsky’s lemma.

The mapping X 7→ XT I(θ0)X is continuous from Rp into R, so by

the continuous mapping theorem,

ZT
n I(θ0)Zn

d→ ZT I(θ0)Z (3.64)
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and as I(θ0) is positive semidefinite (and so has a square root), we

can write this as

ZT I(θ0)Z = ZT I(θ0)
1
2 I(θ0)

1
2 Z = WTW =

p

∑
i=1

W2
i ∼ χ2

p (3.65)

with W ∼ N(0, I).

3.4 Some Ideas from LeCam Theory

Consider first a Gaussian shift experiment

N(g, I(θ)−1), g ∈ Rp, I(θ) (3.66)

is the Fisher information of some statistical model

{ f (·, θ), θ ∈ Θ} (3.67)

The log-likelihood ratio

log
dN(h, I(θ)−1)

dN(0, I(θ)−1)
(X) = hT I(θ)X− 1

2
hT I(θ)h (3.68)

since the ratio is proportional to

exp
(
− (X− h)T I(θ)(X− h)

2
+

XT I(θ)X
2

)
(3.69)

Definition 3.15. A model { f (·, θ), θ ∈ Θ} is called locally asymptoti-

cally normal (LAN) at θ0 ∈
∫

Θ if for all h ∈ Rp (small enough),

log
∏n

i=1 f (Yi, θ0 +
h√
n )

∏n
i=1 f (Yi, θ0)

=
1√
n

n

∑
i=1

hT ∂

∂θ
log f (Yi, θ)|θ=θ0

− 1
2

hT I(θ0)h + Zn

(3.70)

as n→ ∞, where Zn
p→ 0 under Pn

θ0
.

Remark 3.16. The first term in the expansion (by the CLT) converges in

distribution to N(0, hT I(θ0)h) as n→ ∞.

Proposition 3.17. Any statistical model that satisfies the conditions of

Theorem 3 is also LAN.

Proof. The LHS of (dagger) equals find referencefind reference
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nln(θ0 +
h√
n
)− nln(θ0) =

√
n

1
n

n

∑
i=1

hT ∂

∂θ
log f (Yi, θ0) +

n
2

hT ∂2

∂θ∂θT ln(θ̄)h

(3.71)

=
1√
n

n

∑
i=1

hT ∂

∂θ
log f (Yi, θ0)− hT I(θ0)h + op(1)︸ ︷︷ ︸

Zn

(3.72)

Definition 3.18. Let Pn, Qn be sequences of probability measures. We

say Qn is contiguous with respect to Pn (Qn C Pn) if

Pn(An)→ 0⇒ Qn(An)→ 0 (3.73)

for any sequence of events An in the probability space. We say Pn, Qn

are mutually contiguous if Pn C Qn and Pn B Qn and write Pn C

BQn.

Lemma 3.19 (LeCam’s 1st lemma). The following are equivalent:

(i) Qn C Pn

(ii)
dQn

dPn
(Xn)

d→ U, Xn ∼ Pn (3.74)

along a subsequence, then P(U > 0) = 1.

(iii)
dPn

dQn
(Xn)

d→ V, Xn ∼ Qn (3.75)

along a subsequence, E(V) = 1.

(iv) For any sequence of statistics (measurable functions Tn : Ωn → R), we

have Tn
p→ 0 under Pn then Tn

p→ 0 under Qn as n→ ∞.

Remark 3.20. For two probability measures P, Q that are absolutely con-

tinuous with respect to each other, the likelihood ratio is the random variable
dP
dQ (X), X ∼ Q.

Corollary 3.21. (i) If dQn
dPn

d→ eX for Xn ∼ Pn, and X ∼ N(− σ2

2 ), σ2),

σ2 > 0, then

Qn CBPn (3.76)



statistical theory 23

(ii) In any LAN model the product measures Pn
θ0+

h√
n

, Pn
θ0

, corresponding to

the joint distributions of a sample of size n fro the PDF/PMF f (θ0 +

h√
n ), f (θ0) respectively, are mutually contiguous (for arbitrary h ∈ Rp).

Proof. (i) By LeCam’s lemma, P(eX > 0) = 1 for any normal random

variable X, and E
(
eX) = e.

Complete proofComplete proof

IN a LAN model, the product measures ¶n
Θ = ⊗n

i=1¶Θ and P
θ+ h√

n

are mutually contiguous.

Example 3.22. Recall the Hodges’ estimator

θ̃n = θ̂nI
(
|θ̂n| ≥ n−

1
4

)
(3.77)

in a regular parametric model, Θ = R, and where θ̂n is the MLE. One

shows under Pθ , θ 6= 0, we have

√
n(θ̃ − θ)

d→ N(0, I(θ)−1) (3.78)

as n → ∞. But when sampling from P0, then Pn
0 (θ̃(X1, . . . , Xn) 6= 0) =

Pn
0 (|θ̂n| ≥ n−

1
4 ) = Pn

0 (
√

n|θn − θ| ≥ n−
1
4 ) → 0. This follows as Xn

d→
X ⇒ (Xn, n ∈ N) is stochastically bounded, that is, there exists M(ε) such

that P(|Xn| > M(ε)) < ε). Hence, under P0,
√

n(θ̃ − θ)
d→ N(0, 0) which

outperforms the Cramer-Rao lower bound at θ = 0.

Consider now the minimax quadratic risk of θ̃, equal to (for n ∈N fixed),

sup
θ∈Θ

Eh
θ(
√

n(θ̃ − θ))2 (3.79)

Consider the local alternative 0 + h√
n , h ∈ R arbitrary. Then the minimax

risk exceeds

≥ En
h√
n

n(θ̃ − h√
n
)2I
(
θ̃ = 0

)
(3.80)

= h2Pn
h√
n
(θ̃ = 0) (3.81)

= h2(1− Pn
h√
n (θ̃ 6=0)

) (3.82)

≥ h2

2
(3.83)
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by contiguity of Pn
0 CBPn

h√
n

.

Conclude that

lim
n→∞

sup
θ∈Θ

Eh
Θ(
√

n(θ̃ − θ))2 → ∞ (3.84)

whereas

lim
n→∞

sup
θ∈Θ

En
θ (
√

n(θ̂ − θ))2 ≤ sup
θ∈Θ

I(θ)−1 < ∞ (3.85)
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Bayesian Inference

In any parametric model { f (·, θ), θ ∈ Θ}, we can consider a prior

distribution Π on Θ, and model the observations X1, . . . , Xn as IID

copies of the random variable X|θ ∼ f (·, θ), where θ ∼ Π. The

posterior distribution is the law of θ|X1, . . . , Xn.

Formally, if X is the sample space that X takes values in, consider

on X ×Θ the probability distribution Q with pdf/pmf by dQ(x, θ) =

f (x, θ)Π(θ)dxdθ by the laws/definition of conditional probability,

X|θ ∼ f (x, θ)Π(θ)dx∫
X f (x, θ)dxΠ(θ)

= f (x, θ)dx (4.1)

and conversely

θ|X ∼ f (x, θ)Π(θ)dθ∫
Θ f (x, θ)Π(θ)dθ

= Π(θ|X). (4.2)

In particular, for (Xi, i = 1, . . . , n) iid copies of X|θ, the posterior

distribution equals

θ|X1, . . . , Xn ∼
∏n

i=1 f (xi, θ)Π(θ)∫
Θ ∏n

i=1 f (Xi, θ)Π(θ)dθ
(4.3)

The posterior distribution can be used for all purposes of statistical

inference on θ:

(i)

θ̄(X1, . . . , Xn) = E(θ|X1, . . . , Xn) (4.4)

estimates θ,
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(ii)

Cn = {θ ∈ Θ : ‖θ − θ̄‖ ≤ Rn} (4.5)

where Rn is such that Π(Cn|X1, . . . , Xn) = 1− α, giving a credible

set for Θ.

Theorem 4.1 (Bernstein-von Mises theorem). The Bernstein-von Mises

theorem states that in LAN-models { f (·, θ), θ ∈ Θ} and for any prior that

has a positive continuous density at θ0, we have

Π·, X1, . . . , Xn ≈ N(θ̂MLE,
1
n

I(θ0)
−1) (4.6)

under Pn
θ0

(in total variation distance), which in particular implies that any

credible set Cn such that Π(Cn|X1, . . . , Xn) = 1− α satisfies Pn
θ0
(θ0 ∈

Cn) → 1 − α as n → ∞. In particular, asymptotic Bayesian inference

coincides with asymptotic inference based on the MLE.
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Gaussian Linear Model

Let (Yi, i = 1, . . . , n) be the response variable, with Xij, i = 1, . . . , n, j =

1, . . . , p covariates. We have influence parameters θj, related in a way

that

Yi =
p

∑
i=1

θjXij + errori, i = 1, . . . , n (5.1)

Assume that errori is a sum of many small independent “mea-

surement” errors,

errori =
m

∑
m=1

εim (5.2)

which is approximately normal.

Assume that εi ∼ N(0, σ2). Gauss proceeded to compute the

maximum likelihood estimate.

Proposition 5.1 (Approach I — MLE Interpretation). Joint distribution

of the Yi’s is

f (yi, . . . , yn; θ) =
1

(2πσ2)
1
2

exp{− 1
2σ2

n

∑
i=1

(Yi −
p

∑
j=1

θjXij)
2} (5.3)

so the log likelihood is

ln(θ, σ2) = −n
2

log 2πσ2 − 1
2σ2

n

∑
i=1

(Yi −
p

∑
i=1

θjXij)
2 (5.4)

∂

∂θj
ln(θ, σ2) = − 1

2σ2

n

∑
i=1

2(Yi −
p

∑
j=1

θjXij)(−Xij) (5.5)

∂

∂(σ2)
ln(θ, σ2) = −n

2
1
σ2 +

1
σ4

n

∑
i=1

n

∑
i=1

(Yi −
p

∑
i=1

θjXij)
2 (5.6)
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Solving these for zero, we obtain XTY = XTXθ̂, and σ̂2 = ‖Y − Xθ̂‖2,

where we rewrite the linear model in matrix form as Y = Xθ + ε, and note

that ∂2

∂θj∂θk
ln(θ) = − 1

σ2 (XTX)jk. If X has full column rank (the column

vectors Xj are linearly independent), then

θ̂ = θ̂MLE = (XTX)−1XTY (5.7)

Proposition 5.2 (Approach II — Geometric Interpretation). The model

can be written as

Y =
p

∑
j=1

θjXj + ε (5.8)

Heuristically, we can see to find the best approximation of Y ∈ Rn

from the p-dimensional subspace (p ≤ n) of Rn spanned by Xj, j = 1, . . . , p,

assumed to be linearly independent. Setting

〈Y− Xθ, Xθ〉 = 0 (5.9)

gives the projection.

The projection matrix P onto 〈X〉 = span(Xj, j = 1, . . . , p) is given by

P = X(XTX)−1XT since

(i) PX = X(XTX)−1XTX = X,

(ii) P = PT ,

(iii) P2 = P,

and so the best approximation of Y from 〈X〉 is PY = X(XTX)−1XTY =

Xθ̂.

Inserting the model equation Y = Xθ + ε, we see

θ̂ = (XTX)−1XT(Xθ + ε) (5.10)

= (XTX)−1(XTX)θ + (XTX)−1XTε (5.11)

∼ N(θ, σ2(XTX)−1) (5.12)

= N(θ, In(θ)
−1) (5.13)

so we achieve the Cramer-Rao lower bound. So θ̂ is efficient among all

unbiased estimators.
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5.1 Over-fitting a linear model

Consider adding Xp+1 to the model, then fit this model. Then

‖Y− Pp+1Y‖2
2 ≤ ‖Y− PpY‖2

2 (5.14)

since we are projection to a lower dimensional subspace. If p = n,

then

‖Y− PnY‖2
2 = 0 (5.15)

and so the fit is perfect.

In contrast, the prediction error increases with the dimensionality

of the model p, since

E
(
‖Xθ̂ − Xθ‖2

)
= E

(
‖PY− Xθ‖2

)
(5.16)

= E
(
‖Pε‖2

)
(5.17)

= E
(

εT PT Pε
)

(5.18)

= E
(

tr(εT Pε)
)

(5.19)

= E
(

tr(PεεT)
)

(5.20)

= tr(PE
(

εεT
)
) (5.21)

= σ2 tr(P) (5.22)

= σ2 tr(X(XTX)−1XT) (5.23)

= σ2 p (5.24)

since PY = PXθ + Pε = Xθ + Pε, and the trace of a projection

matrix is the sum of the eigenvalues, which are either 0 or 1, and

the number of multiplicity of the latter eigenvalues is equal to the

dimension of the subspace.

This tradeoff between the fit and predictive accuracy leads to the

problem of model selection. For typical matrices X, we have

‖θ̂ − θ‖2 ∼ ‖X(θ̂ − θ)‖2σ2 p
n

(5.25)

When p is moderate compared to N, we can use model selection
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criteria to choose the MLE of low-dimensional model. When p > n,

the vectors (Xj, j = 1, . . . , n) can never be linearly independent, and θ̂

cannot be used at all (XTX is not invertible).
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High-Dimensional Statistics

Consider a functional form

Yi =
p

∑
j=1

Xijθ
0
j + εi, i = 1, . . . , n (6.1)

with p ≥ n or p >> n. We believe that θ0 is sparse in the sense that

most if it’s p coefficients are zero. Formally, assume that

θ0 ∈ B0(k) = {θ ∈ Rp|at most k non-zero entries} (6.2)

with k ≤ n, or k << n.

We call S0 = §(θ0) = {j : θ0
j 6= 0} the active set of θ0, satisfying

|S0| ≤ k. We would like to fit LS in the “true” submodel

Yi = ∑
j∈S0

Xijθ
0
j + εi (6.3)

with prediction risk

Eθ‖θ̂(S0)− θ‖ ≈ 1
n

Eθ‖X(θ̂(S0)− θ)‖2
2 ≈
|S0|

n
≤ k

n
(6.4)

In practice both the position of S0 and k are unknown.

Question 6.1. Can we minimize the oracle risk?

Consider first p ≤ n, and a fixed submodel M of Y = Xθ + ε given

by Y = XMθM + ε, X = (Xm, Xm̄), dim(M) = k.

In the full model, we use the LS estimates to obtain prediction risk
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E
(
‖PY− XΘ‖2

)
= σ2 p (6.5)

where P projects onto 〈X〉.
For the restricted model, the LS-fit for PM, the projection onto〈

XM〉, the prediction risk is

E
(
‖PMY− Xθ‖2

)
= E

(
‖PMY− PMXΘ + PMXθ − Xθ‖2

)
(6.6)

= E
(
‖PM(Y− Xθ)‖2 + ‖(I − PM)Xθ‖2

)
(6.7)

= E
(
‖PMε‖2

)
+ θTXT(I − PM)Xθ (6.8)

= σ2k + θTXT(I − PM)Xθ (6.9)

If we estimate the second term by θ̂TXT(I − PM)Xθ̂, which has

expectation (θ̂ = θ̂ f ull)

E
(

YT P(I − PM)PY
)
= E

(
(Xθ + ε)T(P− PM)(Xθ + ε)

)
(6.10)

= θTXT(I − PM)Xθ + 2E
(

εT(P− PM)Xθ
)
+ E

(
εT(P− PM)ε

)
(6.11)

= θTXT(I − PM)Xθ + 0 + σ2(p− k) (6.12)

(as in the previous lecture).

So if we take

ˆMSPE(M) = θ̂TXT(I − PM)Xθ̂ + 2σ2k− σ2 p (6.13)

is an unbiased “estimate” of

MSPE(M) = E
(
‖PMY− Xθ‖2

)
(6.14)

Now replace σ2 by it’s unbiased estimate σ̂2 = 1
n−p‖Y − PY‖2 to

obtain the estimated predictive risk of model M,

crit
Cp

(M) = θ̂TXT(I − PM)Xθ̂ + 2σ̂2k− σ̂2 p (6.15)

= ‖Y− PMY‖2 + 2σ̂2k− nσ2

(6.16)
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Comparing all submodels M of Rp by computing critCp(M), we fit

the LS estimator in the model M̂ that minimizes critCp(M).

This is called Mallow’s Cp.

Several such model selection criterion exist, all of the form

crit(M) = ‖Y− PMY‖2 + λ dim(M) + const (6.17)

The “derivation” of each criterion suggests a choice of λ.

For p ≥ n this approach cannot be used directly, since ‖Y −
PMY‖ = 0 for dim(M) ≥ n, but we can adapt it by minimizing

‖Y − Xθ‖2 + λ#{θj 6= 0} over Rp. This is a combinatorially hard

optimization problem (to find k, we need to compute (p
k) solutions).

Let us try to find a convex relaxation of this optimization problem,

and note that the penalty can be “written” as

λ‖θ‖0 = λ
p

∑
i=1
|θj|0 (6.18)

Note further that the lq means

‖θ‖q
q =

p

∑
i=1
|θj|q ↓ ‖θ‖0 (6.19)

These “norms” are convex when q ≥ 1, and the program

min
θ∈Θ
‖Y− Xθ‖2 + λ‖θ‖q (6.20)

is convex. So q = 1 arises as a natural compromise and we define θ̃ to

be any solution of

min
θ∈Rp

‖Y− Xθ‖2

n
+ λ‖θ‖1 (6.21)

known as the LASSO estimator.

If we consider

sup
θ∈B0(h)

Eθ‖Xθ̃LASSO − Xθ‖2

n
≤ k

n
log p (6.22)
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Any solution to the minimization problem

min
θ∈Rp

‖Y− XΘ‖2
2

n
+ λ‖θ‖1 (6.23)

for λ a tuning parameter, is called a LASSO solution, denoted by

θ̃ = θ̃LASSO. θ̃ is generally not unique, but Xθ̃ and also ‖θ‖1 give the

same numerical values for all LASSO solutions.1 1 Exercise sheet

Theorem 6.2. Let Y = Xθ0 + ε with ε ∼ N(0, In) and θ0 is k-sparse with

active set S0. Let θ̃ be any LASSO solution, with

λ = 4σ

√
t2 + log p

n
(6.24)

σ2 = max
j=1,...,p

ˆ∑jj (6.25)

ˆ∑ =
XTX

n
(6.26)

the Gram matrix.

Now, assume, for some r0

‖θ̃S0 − θ0‖1 ≤ r0k(θ̃S0 − θ0)T σ̂(θ̃S0 − θ0) (6.27)

with probability ≥ 1− β. Then with probability at least

1− β− e−
t2
2 , (6.28)

we have

1
n
‖X(θ̃ − θ0)‖2

2 + λ‖θ̃ − θ0‖1 ≤ 4kr0λ2 .
k
n

log p (6.29)

Proof. Note that θ0
S0

= θ0. By definition of θ̃, we have

1
n
‖Y− Xθ̃‖2

2 + λ‖θ̃‖1 ≤
1
n
‖Y− Xθ0‖2 + λ‖θ0‖1 (6.30)

Inserting the model equation Y = Xθ0 + ε, we get

1
n
‖X(θ0 − θ̃) + ε‖2

2 + λ‖θ̃‖1 ≤
1
n
‖ε‖2

2 + λ‖θ0‖1 (6.31)

= ‖X(θ0 − θ̃)‖2
2 +

2
n

εTX(θ0 − θ̃) +
1
n
‖ε‖2

2

(6.32)
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and so we obtain

1
n
‖X(θ0 − θ̃)‖2

2 + λ‖θ̃‖1 ≤
2
n

εTX(θ̃ − θ0) + λ‖θ0‖1 (6.33)

Lemma 6.3.

P

(
max

j=1,...,p

2
n
|(εTX)j| ≤

λ

2

)
≥ 1− e−

t2
2 (6.34)

Proof.

1
n

εTX ∼ N(0,
1
n

XTX) = N(0, σ̂) (6.35)

and so 1√
n (ε

TX)j ∼ N(0, σ̂jj), and so

P

(
max

j=1,...,p

2
n
|(εTX)j| >

λ

2

)
≤

p

∑
j=1

(6.36)

(6.37)

Fill in proof from lecture

notes

Fill in proof from lecture

notes
Now, can conclude. We have

1
n
‖X(θ0 − θ̃)‖2

2 + λ‖θ̃‖1 ≤
λ

2
‖θ̃ − θ0‖1 + λ‖θ0‖1

(6.38)

‖θ̃‖1 =
p

∑
i=1
|θ̃i| = ‖θ̃S0‖1 + ‖θSc

0
‖1 ≥ ‖θ0‖1 − ‖θ̃S0 − θ0‖+ ‖θ̃Sc

0
‖1

(6.39)

which gives

‖θ̃Sc
0
‖1 ≤ ‖θ̃‖1 + ‖θ̃S0 − θ0‖1 (6.40)

and so

2
n
‖X(θ̃ − θ0)‖2

2 + 2λ‖θ̃Sc
0
‖1 (6.41)

≤ 2
n
‖X(θ̃ − θ0)‖2

2 + 2λ‖θ̃‖1 − 2λ‖θ0‖1 + 2λ‖θ̃S0 − θ0‖1 (6.42)

≤ λ‖θ̃ − θ0
S0
‖1 + 2λ‖θ0‖1 − 2λ‖θ0‖1 + 2λ‖θ̃S0 − θ0

S0
‖1 (6.43)

= 3λ‖θ̃S0 − θ0
S0
‖1 + λ‖θ̃Sc

0
‖1 (6.44)



36 andrew tulloch

and so we obtain

2
n
‖X(θ̃ − θ0)‖2

2 + λ‖θ̃Sc
0
‖1 ≤ 3λ‖θ̃S0 − θ0

S0
‖1 (6.45)

and then

2
n
‖X(θ̃ − θ0)‖2

2 + λ‖θ̃ − θ0
S0
‖1 =

2
n
‖X(θ̃ − θ0)‖2

2 + λ‖θ̃Sc
0
‖1 + λ‖θ̃S0 − θ0

S0
‖1

(6.46)

≤ 4λ‖θ̃S0 − θ0
S0
‖1 (6.47)

≤ 4λ
√

r0k(θ̃S0 − θ0)T σ̂(θ̃S0 − θ0) (6.48)

= 4λ
√

r0k
1
n
‖X(θ̃S0 − θ0) (6.49)

≤ 4λ2r0k +
1
n
‖X(θ̃S0 − θ0)‖2

2 (6.50)

Thus

1
n
‖X(θ̃ − θ0)‖2

2 + λ‖θ̃ − θ0‖1 ≤ 4λ2r0k (6.51)

Remark 6.4 (Remarks on Theorem 6 in Lecture Notes). (i) Using

E(X) =
∫ ∞

0 P(X > u)du and if β = 0 the result of Theorem 6 be

“integrated” to give a risk bound

sup
θ∈Bn(k)

Eθ
1
n
‖X(X̃− θ0)‖2

2 .
k
n

log p (6.52)

(ii) One can show (exercise sheet) that with high probability,

‖θ̃ − θ0‖2
2 .

k
n

log p (6.53)

(iii) If th error variance is σ2 is not known, we may approximate it by σ̂2 =

1
n YTY, and multiplying λ by σ̂.

About condition (6.27):

‖θ̃S0 − θ0‖2
1 ≤ kr0(θ̃ − θ0)TΣ̂(θ̃ − θ0) (6.54)

= kr0
1
n
‖X(θ̃ − θ0)‖2

2 (6.55)

Σ̂ =
XTX

n
(6.56)
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It suffices to check (6.27) with θ̃ replaced with ∀θ ∈ U, with P(θ̃ ∈
U) = 1.

In the proof of Theorem 6, we have shown

‖θ̃Sc
0
≤ 3‖θ̃S0 − θ0‖1 (6.57)

holds with probability 1.

Corollary 6.5. Theorem 6 still holds if (6.27) is replaced by the condition

∀θ ∈ U = {θ ∈ Rp : ‖θSc
0
‖1 ≤ 3‖θS0 − θ0‖1} (6.58)

we have

‖θS0 − θ‖2
1 ≤ kr0(θ − θ0)TΣ̂(θ − θ0) (6.59)

Note that ‖θS0 − θ0‖2
1 ≤ k‖θS0 − θ0‖2

2 since there are at most k non-zero

entries of θS0 − θ0.

So it remains to check that

‖θS0 − θ0‖2
2 ≤ r0(θ − θ0)Σ̂(θ − θ0) = r0

1
n
‖X(θ − θ0)‖2

2 (6.60)

6.1 Compressed Sensing and the Restricted Isometry Property

Consider a signal Y ∈ Rn and a “sensing”/design matrix Xj ∈
Rn, j = 1, . . . , p such that Y = Xθ = ∑

p
i=1 Xjθj, without noise.

If p > n, the representation is under-determined, but we may aim

to find the “most sparse” solution. Formally, if ‖θ0‖0 = |{θj 6= 0}|, we

want to find the solution

min
θ∈Rp

‖θ‖0 (6.61)

such that Y = Xθ.

If the sensing matrix satisfies the restricted isometry property

(RIP)

(1− ε)‖θ‖2 ≤
1
n
‖Xθ‖2

2 ≤ (1 + ε)‖θ‖2
2 ∀θ ∈ B0(k) (6.62)

for some/all ε(= εk), and if there exists a k-sparse solution θ0 such



38 andrew tulloch

that Y = Xθ0, and if k < n, then the solution of the convex relaxation

of (6.61) (minθ∈Rp ‖θ‖1 such that Y = Xθ) is exactly equal to the

solution of (6.61).

We note that in a Gaussian random matrix, we have XT X
n satisfies

RIP with probability greater than 1− e−k log p.

Remark 6.6. An intuition for Theorem 6 can thus be given as follows.

(i) In the noise model Y = Xθ + ε, with p > n, we can detect sparse

submodels from model selection criterion of the form

‖Y− Xθ‖2
2 + ‖θ‖0 (6.63)

. What was the second termWhat was the second term

(ii) A convex relaxation of the l0 penalty is also possible, along the CRT-

ideas, using condition (6.27), which can be shown to be implied by (RIP).

(iii) Candes and Tao (Annals of Statistics) showed further that a “dual”

estimator of the LASSO is obtained from

min
θ∈Rp

‖θ‖1 (6.64)

such that

1
n
‖Y− Xθ‖2

2 ≤ t (6.65)

where t is the analogue of λ in the definition of the LASSO. This estima-

tor is called the Danzig selector θ̃DANTZIG. One then shows that the

“exact recovery” of the most sparse selector θ0 still holds approximately,

with large probability.

Recall the restricted isometry property,

(1− ε)‖θ‖2
2 ≤ ‖Σ̂θ‖2

2 ≤ (1 + ε)‖θ‖2
2 ∀θ ∈ B0(k) (6.66)

Recall that

Σ̂ =
XTX

n
(6.67)
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for p > n is not invertible, so that difficult part

inf
θ∈Rp ,‖θ‖2≤1

θTΣ̂θ = |(λmin(Σ))| = 0 (6.68)

Consider (Xij) ∼ N(0, 1) giving rise to X. Then

(Σ̂)jj =
1
n

n

∑
i=1

X2
ij(Σ̂)jk =

1
n

n

∑
i=1

XijXik (6.69)

and we see E
(
Σ̂jj
)
= 1 and E

(
Σ̂jk

)
= 1

n ∑n
i=1 E

(
XijXik

)
= 0. Thus

E
(
Σ̂
)
= Ip, the identity matrix.

Theorem 6.7. For Xij as above, and n
log p → ∞ (or min(p, n) → ∞) is

large enough. Then for all k ∈ N, there exists a constant 0 < c < ∞ such

that for all n large enough,

P

(
θTΣ̂θ ≥ 1

2
θTθ ∀θ ∈ B0(k)

)
≥ 1− 2e−Ck log p (6.70)

Proof. It suffices to bound

P

(
θTΣ̂θ

θTθ
− 1 ≥ −1

2
∀θ ∈ B0(k)\{0}

)
= P

(
1− θTΣ̂θ

θTθ
≤ 1

2
∀θ ∈ B0(k)\{0}

)
(6.71)

≥ P

(
sup

θ∈B0(k),θ 6=0

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ ≤ 1

2

)
(6.72)

Let S ⊆ {1, . . . , p} of cardinality |S| = k, then we can bound

P

(
sup

θ∈B0(k),θ 6=0

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ > 1

2

)
= P

max
S

sup
θ∈Rp

S

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ > 1

2


(6.73)

where Rp
S is the subspace of Rp with θj = 0 for θ ∈ Sc.

This is bounded by

≤ ∑
S∈{1,...,p}

P

 sup
θ∈Rp

S ,θ 6=0

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ > 1

2

 (6.74)
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where the sum extends over ( p
k≤pk) elements. Thus the last sum is

≤(?) ∑
S⊆{1,...,p}

2e−(c+1)k log p ≤ 2e−Ck log p pke−k log p︸ ︷︷ ︸
≤1

= 2e−Ck log p (6.75)

where we used

P

 sup
θ∈Rp

s ,θ 6=0

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ > 1

2

 ≤ 2e−(C+1)k log p (?)

Lemma 6.8.

P

(∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ > 18(

√
t + c0k

n
+

t + c0k
n

)

)
≤ 2e−t ∀t > 0 and some c0 < ∞

(6.76)

This lemma implies (?) since for t = (c + 1)k log p we have

18(

√
(c + 1)k log p + c0k

n
+

(c + 1)k log p + c0k
n

)→ 0 (6.77)

since we had assumed n
log p → 0.

Proof (Proof of Lemma).

sup
θ∈Rp

S ,θ 6=0

∣∣∣∣ θTΣ̂θ

θTθ
− 1
∣∣∣∣ = sup

...

∣∣∣∣ θT(Σ̂− I)θ
θTθ

∣∣∣∣ (6.78)

≤ sup
θ ∈ R

p
S, ‖θ‖2 ≤ 1︸ ︷︷ ︸

B(S)

∣∣∣∣∣∣θT(Σ̂− I︸ ︷︷ ︸
Φ

)θ

∣∣∣∣∣∣ (6.79)

= sup
θ∈B(S)

|θTΦθ| (6.80)

Since the unit ball B(S) of Rp
S is compact, we can find (for all δ >

0) a “net” of points θl , l = 1, . . . , N(δ) such that every θ ∈ B(S) is

at distance at most ‖θ − θl‖ < δ away from some θl . We may take

θl ∈ B(S).
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Writing

θTΦθ = (θ − θl + θl)TΦ(θ − θl + θl) (6.81)

= (θl)TΦθl + (θ − θl)Φ(θ − θl)︸ ︷︷ ︸
(I)

+ 2(θ − θl)Φθl︸ ︷︷ ︸
(I I)

(6.82)

|(I)| = ‖θ − θl‖2
2
(θ − θl)T

‖θ − θl‖2
Φ
(θ − θl)T

‖θ − θl‖2
(6.83)

≤ δ2 sup
v∈B(S)

|vTΦv| (6.84)

|(I I)| = 2‖θ − θl‖2

∣∣∣∣∣ (θ − θl)T

‖θ − θl‖2
Φθl

∣∣∣∣∣ (6.85)

≤CS 2δ‖Φθl‖2 (6.86)

≤ 2δ‖Φ‖op‖θl‖2 (6.87)

= 2δ sup
v∈B(S)

|vTΦv| (6.88)

So we proved

sup
θ∈B(S)

|θTΦθ| ≤ max
l=1,...,N(δ)

|θlΦθl |+ (δ2 + 2δ) sup
v∈B(S)

|vTΦv| (6.89)

Set δ = 1
3 .

(1− 7
9
) sup

θ∈B(S)
|θTΦθ| ≤ max

l=1,...,N(δ)
|θlΦθl | (6.90)

showing

sup
θ∈B(S)

|θTΦθ| ≤ 9
2

max
l=1,...,N(δ)

|θlΦθl | (6.91)

θTΦθ = θT(Σ̂− I)θ =
1
n

n

∑
i=1

(Xθ)2
i −E

(
(Xθ)2

i

)
(6.92)

since

θTΣ̂θ =
1
n
(Xθ)TXθ =

1
n

n

∑
i=1

(Xθ)2
i (6.93)
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and

E
(
(Xθ)2

i

)
= E

( p

∑
m=1

Ximθm

)2
 (6.94)

= E

(
p

∑
m=1

X2
imθ2

im

)
+ E

(
∑

m 6=m′
XimXim′θmθm′

)
(6.95)

= ‖θ‖2
2 (6.96)

= θTθ (6.97)

and so it suffices to prove

P

(
max

l=1,...,N( 1
3 )

∣∣∣∣∣ 1n n

∑
i=1

(Xθ)2
i −E

(
(Xθ)2

i

)∣∣∣∣∣ > 2
9
· 18(

√
t + c0k

n
+

t + c0k
n

)

)
(6.98)

We have that (6.98) is bounded by

≤
N( 1

3 )

∑
l=1

P

(∣∣∣∣∣ n

∑
i=1

(g2
i − 1)

∣∣∣∣∣ > 4(
√

n(t + c0k) + (t + c0k))

)
(6.99)

with gi =
(Xθ)i
‖θ‖2

∼ N(0, 1).

Recall that P
(
|X|2 > u2) ≤ e−

u
2 for X ∼ N(0, 1).

Lemma 6.9. Let X = ∑n
i=1(g2

i − 1) where gi ∼ N(0, 1). Then for all

t > 0, n ∈ N,

P(|X| > t) ≤ 2e−
t2

4n+4t , (6.100)

and for all z > 0,

P
(
|X| > 4(

√
nz + z)

)
≤ 2e−z. (6.101)

Proof. Consider, for g ∼ N(0, 1) and λ such that |λ| < 1
2 ,

E
(

eλ(g2−1)
)
=

1√
2π

∫
R

eλ(x2−1)e−
x2
2 dx =

e−λ

√
2π

∫
R

e−(1−2λ) x2
2 dx =

e−λ

√
1− 2λ

= e−
1
2 [− log(1−2λ)−2λ]

(6.102)
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Using a Taylor expansion of log(1− 2λ), we have

log(1− 2λ) = log 1− 2λ · 1− 1
2
(2λ)2 − 2

3!
(2λ)3 − · · · = −

∞

∑
k=1

(k + 1)!
(k + 2)!

(2λ)k+2

(6.103)

and

1
2
[− log(1− 2λ)− 2λ] = λ2[1 + · · ·+ 2

k + 2
(2λ)k + . . . ] (6.104)

≤ λ2

1− 2λ
(6.105)

for |λ| < 1
2 .

So in total, we have

E
(

eλ(g2−1)
)
≤ e

λ2
1−2λ (6.106)

We can also use independence of the gi to obtain

E
(

eλX
)
= E

(
eλ(∑n

i=(g2
i −1))

)
= E

(
n

∏
i=1

eλ(g2
i −1)

)
(6.107)

= E
(

eλ(g2
i −1)

)n
≤ e

nλ2
1−2λ (6.108)

For λ, t > 0, we have

P(X > t) = P(λX > λt) = P
(

eλX > eλt
)

(6.109)

≤ e−λtEeλX ≤ e−λte
nλ2

1−2λ (6.110)

by Markov’s inequality.

We can optimize in λ, and choose

λ =
t

2n + 2t
, (6.111)

in which we obtain the bound

e−
t2

2n+2t exp


nt2

(2n+2t)2

1− 2t
2n+2t

 = e−
t2

2n+2t e
t2

2(2n+2t) = e−
t2

2(2n+2t) (6.112)

For the lower deviations, we repeat the above proof with λ 7→ −λ,
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and bound P(X > −t) ≤ e−
t2

2(2n+2t) and so

P(|X| > t) ≤ P(X > t) + P(X < −t) ≤ 2e−
t2

2(2n+2t) . (6.113)

For the second inequality, substitute t = 4(
√

nz + z) into the first

inequality to get

P
(
|X| > 4(

√
nz + z)

)
≤ 2 exp

{
− 16(

√
nz + z)2

4n + 16
√

nz + 16z

}
≤? 2e−z

(6.114)

which follows since

16nz + 32
√

nz
3
2 + 16z2 ≥ 4nz + 16

√
nz

3
2 + 16z2. (6.115)

In (6.98) we get (with z = t + c0k)

2N(
1
3
)e−tec0k ≤ 2e−t(3A)ke−c0k ≤ 1 (6.116)

for c0 large enough. 2 2 One shows that for all δ > 0,

N(δ) ≤ (
A
δ
)k . (6.117)

So for δ = 1
3 , we have

N(
1
3
) ≤ (3A)k ≤ ec0k (6.118)

for c0 large enough.

Remark 6.10. We have show that θTΣ̂θ concentrates around its expectation

θTθ uniformly in all θ ∈ B0(k), as long as k log p
n → 0. This corresponds to

the “true” sparse model being of dimension ≤ n.

Remark 6.11. Theorem 6 (in the lecture notes) holds as well if the (Xij)’s

are sub-Gaussian in that they satisfy the tail estimate

P
(
|Xij| > u

)
≤ Ce−

u2

2σ2 , (6.119)

for some constants C, σ2 > 0. To prove this, one replaces the concentration

inequality for squared Gaussians by the Bernstein’s inequality for sub-

exponential random variables (see Bühlmann and van der Vaart for the

inequality).

Remark 6.12. We see the above proof generalizes to correlated designs such
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that

En
(
XTX

)
=

Σ (6.120)

whee Σ is any ×p matrix with λmin(Σ) bounded away from zero.

6.2 Inference with the LASSO

The construction of a confidence set for θ is an obvious task One

construction that can be used is based on unbiased risk estimation

(and sample splitting).

Split the sample index set I into two subsets I1, I2 of approximately

equal size, compute θ̃
(1)
LASSO based on I1, and let Y(2), X(2) be the

observations from I2. Then compute

(Y(2) − X(2) θ̃
(1)
LASSO)

T(Y(2) − X(2) θ̃
(1)
LASSO)− 1 +

2Zα√
n
≡ R̂n (6.121)

where Zα are the 1− α quantiles of a N(0, 1)-distribution.

Our confidence set is then

C = {θ ∈ Rp|‖θ − θ̃
(1)
LASSO‖2 ≤ R̂n} (6.122)

which satisfies

lim
n,p→∞

inf
θ∈B0(h)

Pθ(θ ∈ Cn) ≥ 1− α (6.123)

for all k such that k log p
n → 0.

One would want

sup
θ∈B0(k)

Eθ | Cn︸︷︷︸
l2 diameter of Cn

|22 .
k
n

log p (6.124)

so that the confidence interval reflects the accuracy of estimation of

θ̃LASSO.

One can show

Eθ |Cn|2 .
k
n

log p +
1√
n

, (6.125)
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which gives the result that

k
n

log p� 1√
n
⇐⇒ k log p�

√
n. (6.126)

Uniformly in B0(k), no further improvement is possible.3 3 An information theoretic bound.



7

Conclusion

7.1 Outlook on Nonparameterics

What if we relax our parametric assumption on p?

(i) We have X1, . . . , Xn ∼iid p, where we can parameterize p by cumu-

lative distribution functions or probability densities.

(ii) We have Yi = f (Xi) + εi, with εi ∼ N(0, I), with nothing known

about f .

7.2 Relevant previous Tripos questions

(i) 2013 - 1, 2

(ii) 2012 - 1, 2

(iii) 2011 - 1, 3, 4

(iv) 2010 - 1, 2

(v) 2009 - 1, 2
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