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Random Walks on Graphs

Our basic setting is the (hyper-)cubic lattice on R?,d > 1. This is the
graph with vertex set Z%, edges (x,y) <= ||x —y|l1 = 1, and edge
set denoted E?. A lattice is LY = (27, E?).

1.1 Percolation

Let0 < p < 1. Lete € E“, and with probability p independently
for each edge, declare ¢ to be open else closed. Consider x ++ y
if there exists an open path from x to y. The open cluster at x is
Cx={y:x <y}

Theorem 1.1

For a given p, what can be said about the Cy?

Forp=1,Cx = Z;. For p =0, Cy = {x}.

Definition 1.2 (Percolation probability). Let 6(p) = P(|Cy|) = Pp.
Note that 6 is non-decreasing.

Let p. = sup{p : 6(p) = 0}.

It is known that 0 is C* on (p., 1], and that 6 is right-continuous
on [0,1].

It is believed that 6 is concave on (p., 1], and that 6 is real-analytic

on (pc, 1], and that 6(p.) = 0 (known for d = 2, and d > 16).

Definition 1.3. Probability theorey. Let Q = {0, 1}E', F be the o-filed
generated by the finite-dimensional cylinder ... of form . {w € O :

w=_¢on F}=Ep(Z). ..

(Fill in from lecture notes

)
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Theorem 1.4. Ford > 2,0 < p, < 1.

Consider Z¢, with x, = p"(1+° W) as n — oo, u = p(2Z4)

We have «, ~ An‘u" for some A = A(d),c = c(d) where a, ~ by,
means 7+ — 1.

¢y is called the critical exponent. People are hoping to show that
ford=2,¢= _% c is expected to be universal in that it depends on d

but not each d-dimensional graph.

1.2 Coupling

Let LY = (Z%, E?) consider P, on Q = {0, 1}Ed.
Let (U,, e € E) be independent uniform random variables U(0,1).
Let p € (0,1). Then

0 U >p
p(e) = ‘ (1.1)
1 U <p

if p1 < pa then pip, (¢) < pp, (e).
pp + 0 < p < 1lisa coupling of percolations, containing all

interesting, “universal” in p.

Theorem 1.5. For any increasing function f : O — R,

Ep (f) < Ep(f) (12)

for p1 < po.
Example 1.6. For example, u,v € Z%, f(u) = T(u ¢ v). Then
Py, (u <> v) <Py, (u <> ).

1.3 Oriented/Directed Percolations

Consider the standard percolation, and define

7( p) = PP(there exists an infinite directed path through the origin to p) .
(1.3)

Then p; = sup{p : 7(;7) =0}. As 7(;7) < 6(p), we have p; > p..
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1.4 Correlation Inequalities

Consider a set E be nonempty and finite, and QO = {0,1}£. The
sample space Q) is partially ordered by wy < wy if wy(e) < wy(e) for
alle € E.

Event A C Q is called increasing if w € A, w < w' = w’ € A and

decreasing if A = Q\A is increasing.

Definition 1.7. With two probability measures i1, 4o, we write p <g
po if p1(A) < pp(A) for all increasing events A.

Equivalently, u; < pp if and only if y1(f) = Yo f(w)u1(w) <
2 (f) for all increasing functions f : QO — R.

Let S C O? givenby S = {(,w) € O? : T < w}.
Theorem 1.8 (Strassen). The following are equivalent:
(i) p1 < po
(ii) There exists a probability measure x on Q2 such that
(i) x(S)=1
(ii) Marginals of x are pq and py.
Proof. From reference in the back. O
Theorem 1.9 (Holley’s inequality). Let u1, uo be probability measures

which are positive (in that p;(w) > 0 for all i and w € Q). If

pa(wr V wa)pr (w1 A wa) > py(wr)pa(w2) (1.4)

for all wy,wy € Q) then py < py.

The notation is

(w1 V wz)(e) = maxwy(e), wa(e) (1.5)
(w1 Awz)(e) = minwi(e), wa(e) (1.6)

Proof. See Probability and Random Processes (Stirzaker), the section

on Markov chains in continuous time for the necessary background.

Definition 1.10 (Markov Chains). (Xt > 0) taking values in a state
space S, which is finite satisfying the Markov property
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Definition 1.11 (Markov Property). Forall x,y € 5,x # y,
P(Xpn = y|Xe = x) = hG(x,y) +o(h) (1.7)

ash |0
The matrix G = (G(x,¥))xyes is the generator of the Markov
chain. The diagonal elements G(x, x) are chosen such that the row

sums are all zero,

Y G(x,y) =0 (1.8)

yeS
for all x € S.

Definition 1.12 (Invariant distribution). 7t on S is an invariant distri-
bution if it satisfies if X has distribution 7, then X; has distribution

tforallt > 0.
Lemma 1.13. 7 is invariant if and only if ©G = 0.

Definition 1.14. X is time reversible if 7(x)G(x,y) = (y)G(y, x) for
all x,y € S where 77 is (say) invariant.

If detailed balance holds for some 7t then 7t is invariant.

Let y be a positive probability measure on (.

For w € Q) and ¢ € E, define the configurations w®, w, by

win =4 I (19)
1 f=e

w(f) = wif) [ (1.10)
0 f=e

Let G: O? 5 Rbe given by G(w,, w®) =1, G(w’, we) = ﬁgi;;, for

allw € Qand e € E. Set G(w,w') = 0 for all other elements (coordi-

nate distance greater than 2), and G(w, w) = — L2, G(w, @').

G is the generator for a Markov chain X on ). We then have
H(w)G(w, @) = p(w")G(w',w) (1.11)

(trivial from the construction of G).
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Thus, u is invariant for X.

Now, construct a Markov chain ((X;, Y¢)t > 0) taking values in
S = 2. Let py, yp be positive probability measures on (), assumed
positive.

Let G be given by

G((re, w), (%, w%)) =1 (1.12)
e _ VZ((")E) 1.1

G((T[/w )/(7-[6/“)6)) = }/lz(wg) (1.13)
e e V) ,ul(nf) _ ,MZ(WE) 1.1

R~ ELI

from the conditions of the theorem.

Defining G(x,y) = 0 otherwise and G(x, x) to satisfy the zero
row-sum condition, we have that G is a Markov chain. Thus it has an
invariant measure y. Then X is a Markov chain, having measure .
Y is a Markov chain, having invariant measure .

Then by Strassen’s theorem ( 1.8), u1 < po.

Choose p1, pp satisfying the condition. Let Z = (X,Y) a Markov
chain on Q?, in facton S = {(71,w) : ™ < w}.

X is a Markov chain with invarnaitn measure 4. Y is a Markov
chain with invariant distirbuiton p5.

Then Z has an invariant measure x on S. Let f : () — R be

increasing. Then ju1(f) = x(f(7)) < x(f(w)) = pa(f).
This completes the proof. O

Theorem 1.15 (FKG inequality). Let y be a probability measure on () =
{0,1}F with |E| < oo such that u is positive and

H(wr Vwr)pu(wr Awz) > p(wr)p(wz), (1.15)

known as the FKG lattice condition.

Then u is positively associated in that

u(fg) = u(fn(g) (1.16)

for all increasing random variables f,g : (3 — R or equivalently,

u(ANB) > u(A)u(B) (1.17)

9
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for all increasing events A, B.

Example 1.16. Consider a percolation, with A = {x <>}, B = {u < v}.

Then we have

Ppy(x < |u < v) > Py(x <> y). (1.18)
History 1.17. When y is a product measure, this was first proven by Harris
(1961) by induction on |E|.

Proof. Let 1 = u. Note that (1.16) is invariant under g — g + ¢, for

c € R. Thus we may assume that g is strictly positive. Then

_ rw)s()
Lo g()i(c)

Since g is increasing, #1 < pp follows by the FKG lattice condition.

p2(w) (1.19)

By the Holley inequality, y1(f) < u2(f) for f increasing. Therefore,

u(f) < % as required. O

1.4.1 The BK Inequality

Consider Q) = {0,1}F, |E| < co. Let w € O, F C E. The consider

C(w,F) ={w' € Q:w'(e) = w(e)Ve € F} = (w(e) : e € F) x {0,1}F\F
(1.20)

Let A, B C Q). Then define
AOB={weQ:3IF CEC(w,F) CAC(w,F) CB} CANB. (1.21)

If A, B are increasing, then C(w,F) C A if and only if wp € A,

where

w(e) e€F
wr(e) = (1.22)
0 e¢ F

In this case AUB = {w : IF C Es.t.wf € A, wp\p € B}.

Theorem 1.18 (BK inequality). For increasing subsets For product mea-

sure P (say Pp, (w(e) = 1) for some given (pe,e € E)),
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P(AOB) < P(A)PP(B) (1.23)

for all increasing events A, B.

Theorem 1.19 (Reimer’s inequality).
IP(ACB) <IP(A)IP(B) (1.24)

forall A, B C Q) and product measures IP.

1.5 Influence
Question 1.20. What is the influence of an individual in an election?

Question 1.21. An increasing event A, a sequence of measures Py, and
consider g(p) = P,(A).

For example, consider a problem from reliability theory - an elec-
trical network has every link cut with probability 1 — p, and what
is the probability that the network is still connected? This class of
theorems are called “S-shaped theorems”.

Q=1{0,1}F |E| <, |[E| =N, AC Q.

Lete € E.

Definition 1.22. The influence of e on A is
In(e) =Pp(I(A) () # La(we)). (1.25)

If A is increasing, then

Ia(e) =Py (A%) —Pp(Ae). (1.26)

where
A’ ={w:w € A} (1.27)
A, ={w:we, € A} (1.28)

(1.29)

11
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Theorem 1.23 (Kahn-Kalani-Limial, Talagrand). There exists ¢ > 0 such
that for all e, A and 0 < p < 1. Then

— 1
Ix(e) > c[Py(A)P,(A)]log —————. 1.30
Egg A P ) P( )} g MaXeck IA(E) ( 3 )
Proof. One uses discrete Fourier analysis (but non-examinable). O

Theorem 1.24. It is interesting if we have uniform upper bound M, for the
IA (6)

Let m = maxecg 14 (e). Then we can write

mN > [ '}log% (1.31)
we gl

Theorem 1.25 (Restatement of KKL). The maximum influence M satis-

fies

log N
N

m > 'P,(A)P,(A) (1.33)

for some universal ¢’ > 0.

The IOgN is optimal.

Example 1.26 (Tribes). Consider N people partitioned into t tribes, each of
size s = log N — loglog N + «, and let p = %

Then let
A = {There exists a tribe all of whose elements are 1} (1.34)
Then
L4(e) ~ cP(A) P(A) O8N (135)
forall e.
Theorem 1.27 (Symmetric Case). If I4(e) is a constant for e € E,
Y Ia(e) > c[Pp(A)P,y(A)]log N. (1.36)

ecE
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1.6  Sharp Threshold
Let Q) as before, A C (). Then

Theorem 1.28 (Rousseau, Margoulis).

d
SPy(A) = T Py(A%) ~Py(A°), (137)
p ecE

Note this is equal to Y ,cg L4 (e) if A is increasing.

Proof. Need to only consider
Z][ w)pll (1 — p)N-Ml (1.38)

where N = |E|, 7 = {e: w(e) = 1}.

Then
d, N — -
P Z]I |Z 1_|:|)P”(1—P)'N e (139)
and so
d 9] N~y
p(1=p) g, Pp(4) = LI(A) (@)(In| = Np)p" (1 - p) (140)

=TP,(I(A) (Iy| — Np)) (1.41)
=) P,(I(A) (I(e) = p)) (1.42)

=)_Pp(I(A)I(e)) — pPy(A)  (143)
= L PPp(A?) = p(pPp(A°) + (1 = p)Pp(Ae))  (1.44)
where I(e) = I(e open) = w(e), so || = Y, I(e).
This completes the proof. O
1.7 Back to Percolation

Let L4 = (Zd,lEd),O < p < 1, and measure P,. Let N be the number

of open clusters. Then

0 p<p
Py(N>1) = ‘ (1.45)
1 p>pc
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Then 6(p) = P, (0 € infinite open cluster). So

0 <
0= P pe (1.46)

>0 p>rpe

To show (??) implies (2?), we have P,(N > 1) < Y - P,(x €
infinite open cluster) =Y, 0 = 0.

To show (??) implies (??), by Kolmogrov’s zero-one law, we have
P,(N >1) € {0,1}, but P,(N > 1) > 6(p) > 0 for p > pe.

Theorem 1.29 (Uniqueness of infinite cluster). For all 0 < p < 1, either
P,(N=0)=1 (1.47)
or
P,(N=1)=1 (1.48)

Proof. Fix p € (0,1).

Lemma 1.30 (Part A). There exists k = k, € {0,1,,2,..., } U {oco} with
P,(N=k) =1.

Proof. £ comes equipped with a shift translation, and the measure
is invariant under this shift. Thus N = N(w) is invariant under the

shift. O

This proof requires this lemma.

Lemma 1.31. Any shift-invariant random variable on (Q, F,IP,) is almost

surely constant.
Proof. Elementary application of measure theory. O
Lemma 1.32 (Part B). k, € {0,1, 00} - the “finite-energy property”.

Proof. Suppose 2 < kj < 0.

Find n such that IP,(Ayintersections > 2 infinite open clusters) >

1
2. D _
Lemma 1.33 (Part C). k, # co.

Proof. Say x is a trifurcation if
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(i) |Cx| = oo.
(ii) The removal of x breaks Cy into three disjoint infinite clusters.

Then 7 = IP,(x is a trifurcation) is independent of x.

We claim T > 0. To show this, take a large diamond box that
intersects with at least three open clusters. Then there exists n such
that P, (S, intersects > 3 infinite open clusters) > 1.

Thus T > 0.

The argument is then that we use the ration beween boundary and
volume to bound the number of trifuricatinos in A,, and show that

this leads to a contradiction for large n. O

N.B. - consider the corresponding proof for site percolation. For

x,Y,z € dS, does there exist open paths to zero? O

1.8 Percolation in Two Dimensions

There are two models, bond percolation on 12, and site percolation
on I, the triangular lattice.

The triangular lattice is “self-matching”, in that the dual construc-
tion is on the same lattice as the primal (c.f. the dual of the square

lattice).

1.8.1  Bond percolation on 72, Site Percolation on T

Theorem 1.34. For bond percolation on Z?, ©(3) = 0.

Proof (Proof of Zhang). Letp = % and suppose ®(%) > 0. Since
@(%) > 0, then the probability there exists an infinite open cluster is
one.

Let T, = [0,n]2. As n goes to infinity, then the probability that T,
intersects with the infinite open cluster tends to one. Thus, find N
such that for all n > N, IP(T), intersects the infinite open cluster) is
greater than 1 — %4.

Consider A’ be the event that the top of T, is joined to the in-
finite open cluster. Define Al Al A" to be the bottom, left, and
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right analogues. Then IP(T;, does not intersects the infinite cluster)
is P(Wﬁﬁmﬁmﬁ) > JP(W)4 foru=tb,1,r.

Then we have IP(A") > Z by the given result.

Let n = N + 1. Pass to the dual percolation, ...

1.8.2  Site percolation on I1

IT has the vertex set {mi +nj : m,n € Z},i = (1,0),j = $(1,V/3)
when embedded into R?.

Now, consider a box in R?, with vertices (0,0) and (a,b) with
aeN,be /32N.

Each site is black with probability %, and white otherwise. Let
H,, = {L <! R € R, where L is the left edge and R is the
right edge. That is, H, }, is the event that there exitss a black path that
traverses R, ; from L(R,}) to R(R,p).

Then we have the lemma as follows:
Lemma 1.35 (RSW Lemma).

]P(HZa,b) > ]P(I_Ia,b)2 . (1-49)

PN

Theorem 1.36. pc(bond, T) = 1
Theorem 1.37. pc > %, and in fact ®(L) = 0 for the bond model on Z>.

Proof. Following p 122 of the book.
We need to prove that p. < 1 - thatis @(p) > 0 for p > 1.
Let H, = Hyg, ,
ists. By the previous lemma,s there exists T > 0 such that IP% (Hp) >

/3 be the event that a black crossing of Ry, /3 ex-

T for some T > 0. Let% <p< %.
Then

(1= p)lup(x) <P;_p(Rad(Cy) > n) <P;(Rad(Co) > n) =vy, —0

1
2

(1.50)
where Rad(Cy) = max{|y — x| : x > y}.



So we have

d 1
— > — —_— .
dp]Pp(H") > ct(1-1Py(Hy))log Su, (1.51)

and integrating gives

P §(p) 1 1
_o \FJ > = _ = )
/% 1 _g(p)dp = ctlog o - (r=3) (1.52)

and so IP,(Hy) > 1— (1 — T)(Svn)”(p_%) —lasn—ooifp> 1.

1.9 Cardy’s Formula

Given a Jordan curve on R?, there exists a conformal map from D to
the interior of the equilateral triangle T of C with vertices A = 0,B =
1,C = e%i and such that ¢ can be extended to the boundary 9D in
such a way that it becomes a homeomorphism from D U dD to the

closed triangle T.

Theorem 1.38 (Cardy’s Formula).
Ps(ac <> bx in D) — |BX]| (1.53)

as 6 — 0.

PERCOLATION
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Self Avoiding Walks

Consider G a graph, with v is a self avoiding walk which visits each
vertex of G at most once.
Gn(v) is the number of self avoiding walks with length n. We

assume G is transitive. Then G, is submultiplicative, and we defined
K(G) = nh_r)rolo Gnn (2.1)

For examples K(d — ary — tree) = d —1,and K(G) < A—1

(exercise).

Theorem 2.1. K(H1) = /2 + /2.

2.1 Generating Functions

zhl 00
Z(z)= ), Y G,-2" (2.2)
YSAW n=1
Cauchy-Hadarmad gives the radius of convergence is ——— =

limnaoo Gnn

K(G)

2.2 Random Clusters Model/FK (Fortun-Kostelyn) Percolation

Definition 2.2. G = (V,E), Q = {0,1}F, forw € Q, k(w) is the

number of open clusters.
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The RC measure p € [0,1], 4 € (0, 00),

Pa(@) = 7 [T plw(e)@ —p) @ @3

P ecE

(i) g =11is standard percolation,
(i) p,q — 0 with % — 0 is electrical networks.

(iii) For g = 2, we have the FK Isiing model, where for w € {0,1}F, for
each open cluster of w, we set the spins/states of the vertices of it

to £1 iwht equal probability, so G € {+1}", with

1
up(G) = 7 exp(B ) GxGy) (2.4)
x~y

andp=1—eP.

Our aim is to define the random cluser measure on (Z%,E?). Let A
be a a finite box in Z%. Let E,, = {(u,v) € EdluveA Let b = 0,1, and
0% = {we 0 ={0,1}Ew(e) = bVe ¢ A}.

Let g} o (@) = 71— (TTee, P9 (1 — p)'=1€))gH@),
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