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Random Walks on Graphs

Our basic setting is the (hyper-)cubic lattice on Rd, d ≥ 1. This is the

graph with vertex set Zd, edges 〈x, y〉 ⇐⇒ ‖x− y‖1 = 1, and edge

set denoted Ed. A lattice is Ld = (Zd, Ed).

1.1 Percolation

Let 0 < p < 1. Let e ∈ Ed, and with probability p independently

for each edge, declare e to be open else closed. Consider x ↔ y

if there exists an open path from x to y. The open cluster at x is

Cx = {y : x ↔ y}.

Theorem 1.1

For a given p, what can be said about the Cx?

For p = 1, Cx = Zd. For p = 0, Cx = {x}.

Definition 1.2 (Percolation probability). Let θ(p) = P(|Cθ |) = Pp.

Note that θ is non-decreasing.

Let pc = sup{p : θ(p) = 0}.
It is known that θ is C∞ on (pc, 1], and that θ is right-continuous

on [0, 1].

It is believed that θ is concave on (pc, 1], and that θ is real-analytic

on (pc, 1], and that θ(pc) = 0 (known for d = 2, and d ≥ 16).

Definition 1.3. Probability theorey. Let Ω = {0, 1}Ed
, F be the σ-filed

generated by the finite-dimensional cylinder ... of form . {ω ∈ Ω :

ω = ξ on F} = EF(ξ). ... Fill in from lecture notesFill in from lecture notes
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Theorem 1.4. For d ≥ 2, 0 < pc < 1.

Fill in lecture notes from

Chapter 3 of Probability on

Graphs

Fill in lecture notes from

Chapter 3 of Probability on

Graphs

Consider Zd, with κn = µn(1+o(1)) as n→ ∞, µ = µ(Zd)

We have κn ∼ Ancµn for some A = A(d), c = c(d) where an ∼ bn

means an
bn
→ 1.

cn is called the critical exponent. People are hoping to show that

for d = 2, c = 11
32 . c is expected to be universal in that it depends on d

but not each d-dimensional graph.

1.2 Coupling

Let Ld = (Zd, Ed) consider Pp on Ω = {0, 1}Ed
.

Let (Ue, e ∈ E) be independent uniform random variables U(0, 1).

Let p ∈ (0, 1). Then

µp(e) =

0 Ue ≥ p

1 Ue < p
(1.1)

if p1 ≤ p2 then µp1(e) ≤ µp2(e).

µp : 0 < p < 1 is a coupling of percolations, containing all

interesting, “universal” in p.

Theorem 1.5. For any increasing function f : Ω→ R,

Ep1( f ) ≤ Ep2( f ) (1.2)

for p1 ≤ p2.

Example 1.6. For example, u, v ∈ Zd, f (u) = I(u↔ v). Then

Pp1(u↔ v) ≤ Pp2(u↔ v).

1.3 Oriented/Directed Percolations

Consider the standard percolation, and define

−→
θ (p) = P(there exists an infinite directed path through the origin to p) .

(1.3)

Then −→pc = sup{p :
−→
θ (p) = 0}. As

−→
θ (p) ≤ θ(p), we have −→pc ≥ pc.
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1.4 Correlation Inequalities

Consider a set E be nonempty and finite, and Ω = {0, 1}E. The

sample space Ω is partially ordered by ω1 ≤ ω2 if ω1(e) ≤ ω2(e) for

all e ∈ E.

Event A ⊆ Ω is called increasing if w ∈ A, w ≤ w′ ⇒ w′ ∈ A and

decreasing if A = Ω\A is increasing.

Definition 1.7. With two probability measures µ1, µ2, we write µ1 ≤st

µ2 if µ1(A) ≤ µ2(A) for all increasing events A.

Equivalently, µ1 ≤st µ2 if and only if µ1( f ) = ∑Ω f (ω)µ1(ω) ≤
µ2( f ) for all increasing functions f : Ω→ R.

Let S ⊆ Ω2 given by S = {(π, ω) ∈ Ω2 : π ≤ ω}.

Theorem 1.8 (Strassen). The following are equivalent:

(i) µ1 ≤ µ2

(ii) There exists a probability measure κ on Ω2 such that

(i) κ(S) = 1

(ii) Marginals of κ are µ1 and µ2.

Proof. From reference in the back.

Theorem 1.9 (Holley’s inequality). Let µ1, µ2 be probability measures

which are positive (in that µi(ω) > 0 for all i and ω ∈ Ω). If

µ2(ω1 ∨ω2)µ1(ω1 ∧ω2) ≥ µ1(ω1)µ2(ω2) (1.4)

for all ω1, ω2 ∈ Ω, then µ1 ≤ µ2.

The notation is

(ω1 ∨ω2)(e) = max ω1(e), ω2(e) (1.5)

(ω1 ∧ω2)(e) = min ω1(e), ω2(e) (1.6)

Proof. See Probability and Random Processes (Stirzaker), the section

on Markov chains in continuous time for the necessary background.

Definition 1.10 (Markov Chains). (Xt, t ≥ 0) taking values in a state

space S, which is finite satisfying the Markov property
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Definition 1.11 (Markov Property). For all x, y ∈ S, x 6= y,

P(Xt+h = y|Xt = x) = hG(x, y) + o(h) (1.7)

as h ↓ 0

The matrix G = (G(x, y))x,y∈S is the generator of the Markov

chain. The diagonal elements G(x, x) are chosen such that the row

sums are all zero,

∑
y∈S

G(x, y) = 0 (1.8)

for all x ∈ S.

Definition 1.12 (Invariant distribution). π on S is an invariant distri-

bution if it satisfies if X0 has distribution π, then Xt has distribution

π for all t ≥ 0.

Lemma 1.13. π is invariant if and only if πG = 0.

Definition 1.14. X is time reversible if π(x)G(x, y) = π(y)G(y, x) for

all x, y ∈ S where π is (say) invariant.

If detailed balance holds for some π then π is invariant.

Let µ be a positive probability measure on Ω.

For ω ∈ Ω and e ∈ E, define the configurations ωe, ωe by

ωe( f ) =

w( f ) f 6= e

1 f = e
(1.9)

ωe( f ) =

w( f ) f 6= e

0 f = e
(1.10)

Let G : Ω2 → R be given by G(ωe, ωe) = 1, G(ωe, ωe) =
µ(ωe)
µ(ωe)

, for

all ω ∈ Ω and e ∈ E. Set G(w, w′) = 0 for all other elements (coordi-

nate distance greater than 2), and G(w, w) = −∑ω′ 6=ω G(ω, ω′).

G is the generator for a Markov chain X on Ω. We then have

µ(ω)G(ω, ω′) = µ(ω′)G(ω′, w) (1.11)

(trivial from the construction of G).
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Thus, µ is invariant for X.

Now, construct a Markov chain ((Xt, Yt)t ≥ 0) taking values in

S = Ω2. Let µ1, µ2 be positive probability measures on Ω, assumed

positive.

Let G be given by

G((πe, ω), (πe, ωe)) = 1 (1.12)

G((π, ωe), (πe, ωe)) =
µ2(ωe)

µ2(ωe)
(1.13)

G((πe, ωe), (πe, ωe)) =
µ1(πe)

µ1(πe)
− µ2(ωe)

µ2(ωe)
≥ 0 (1.14)

from the conditions of the theorem.

Defining G(x, y) = 0 otherwise and G(x, x) to satisfy the zero

row-sum condition, we have that G is a Markov chain. Thus it has an

invariant measure µ. Then X is a Markov chain, having measure µ1.

Y is a Markov chain, having invariant measure µ2.

Then by Strassen’s theorem ( 1.8), µ1 ≤ µ2.

Choose µ1, µ2 satisfying the condition. Let Z = (X, Y) a Markov

chain on Ω2, in fact on S = {(π, ω) : π ≤ ω}.
X is a Markov chain with invarnaitn measure µ1. Y is a Markov

chain with invariant distirbuiton µ2.

Then Z has an invariant measure κ on S. Let f : Ω → R be

increasing. Then µ1( f ) = κ( f (π)) ≤ κ( f (ω)) = µ2( f ).

This completes the proof.

Theorem 1.15 (FKG inequality). Let µ be a probability measure on Ω =

{0, 1}E with |E| < ∞ such that µ is positive and

µ(ω1 ∨ω2)µ(ω1 ∧ω2) ≥ µ(ω1)µ(ω2), (1.15)

known as the FKG lattice condition.

Then µ is positively associated in that

µ( f g) ≥ µ( f )µ(g) (1.16)

for all increasing random variables f , g : Ω→ R or equivalently,

µ(A ∩ B) ≥ µ(A)µ(B) (1.17)
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for all increasing events A, B.

Example 1.16. Consider a percolation, with A = {x ↔}, B = {u ↔ v}.
Then we have

Pp(x ↔ |u↔ v) ≥ Pp(x ↔ y) . (1.18)

History 1.17. When µ is a product measure, this was first proven by Harris

(1961) by induction on |E|.

Proof. Let µ1 = µ. Note that (1.16) is invariant under g 7→ g + c, for

c ∈ R. Thus we may assume that g is strictly positive. Then

µ2(ω) =
µ(ω)g(ω)

∑w′ g(ω′)µ(ω′)
(1.19)

Since g is increasing, µ1 ≤ µ2 follows by the FKG lattice condition.

By the Holley inequality, µ1( f ) ≤ µ2( f ) for f increasing. Therefore,

µ( f ) ≤ µ( f g)
µ(g) as required.

1.4.1 The BK Inequality

Consider Ω = {0, 1}E, |E| < ∞. Let ω ∈ Ω, F ⊆ E. The consider

C(ω, F) = {w′ ∈ Ω : ω′(e) = ω(e)∀e ∈ F} = (w(e) : e ∈ F)× {0, 1}E\F

(1.20)

Let A, B ⊆ Ω. Then define

A�B = {ω ∈ Ω : ∃F ⊆ E, C(ω, F) ⊆ A, C(ω, F) ⊆ B} ⊆ A ∩ B. (1.21)

If A, B are increasing, then C(ω, F) ⊆ A if and only if ωF ∈ A,

where

ωF(e) =

w(e) e ∈ F

0 e /∈ F
(1.22)

In this case A�B = {ω : ∃F ⊆ Es.t.ωF ∈ A, ωE\F ∈ B}.

Theorem 1.18 (BK inequality). For increasing subsets For product mea-

sure P (say Ppe(w(e) = 1) for some given (pe, e ∈ E)),
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P(A�B) ≤ P(A)P(B) (1.23)

for all increasing events A, B.

Theorem 1.19 (Reimer’s inequality).

P(A�B) ≤ P(A)P(B) (1.24)

for all A, B ⊆ Ω and product measures P.

1.5 Influence

Question 1.20. What is the influence of an individual in an election?

Question 1.21. An increasing event A, a sequence of measures Pp, and

consider g(p) = Pp(A).

For example, consider a problem from reliability theory - an elec-

trical network has every link cut with probability 1 − p, and what

is the probability that the network is still connected? This class of

theorems are called “S-shaped theorems”.

Ω = {0, 1}E, |E| < ∞, |E| = N, A ⊆ Ω.

Let e ∈ E.

Definition 1.22. The influence of e on A is

IA(e) = Pp(I(A) (ωe) 6= IA(ωe)). (1.25)

If A is increasing, then

IA(e) = Pp(Ae)−Pp(Ae). (1.26)

where

Ae = {ω : ωe ∈ A} (1.27)

Ae = {ω : ωe ∈ A} (1.28)

(1.29)
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Theorem 1.23 (Kahn-Kalani-Limial, Talagrand). There exists c > 0 such

that for all ε, A and 0 < p < 1. Then

∑
e∈E

IA(e) ≥ c[Pp(A)Pp(A)] log
1

maxe∈E IA(e)
. (1.30)

Proof. One uses discrete Fourier analysis (but non-examinable).

Theorem 1.24. It is interesting if we have uniform upper bound Mp for the

IA(e).

Let m = maxe∈E IA(e). Then we can write

mN ≥ [· · · ] log
1
m

(1.31)

m ≥ [· · · ]
N

log
1
m
≥ [· · · ]′ log N

N
. (1.32)

Theorem 1.25 (Restatement of KKL). The maximum influence M satis-

fies

m ≥ c′Pp(A)Pp(A)
log N

N
(1.33)

for some universal c′ > 0.

The log N
N is optimal.

Example 1.26 (Tribes). Consider N people partitioned into t tribes, each of

size s = log N − log log N + α, and let p = 1
2 .

Then let

A = {There exists a tribe all of whose elements are 1} (1.34)

Then

IA(e) ∼ cP(A)P
(

A
) log N

N
(1.35)

for all e.

Theorem 1.27 (Symmetric Case). If IA(e) is a constant for e ∈ E,

∑
e∈E

IA(e) ≥ c[Pp(A)Pp(A)] log N. (1.36)
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1.6 Sharp Threshold

Let Ω as before, A ⊆ Ω. Then

Theorem 1.28 (Rousseau, Margoulis).

d
dp

Pp(A) = ∑
e∈E

Pp(Ae)−Pp(Ae). (1.37)

Note this is equal to ∑e∈E IA(e) if A is increasing.

Proof. Need to only consider

Pp(A) = ∑
ω

I(A) (ω)p|η|(1− p)N−|η| (1.38)

where N = |E|, η = {e : ω(e) = 1}.
Then

d
dp

Pp(A) = ∑
ω

I(A) (ω)(
|η|
p
− N − |η|

1− p
)p|η|(1− p)|N−|η| (1.39)

and so

p(1− p)
d

dp
Pp(A) = ∑

ω

I(A) (ω)(|η| − Np)p|η|(1− p)N−|η| (1.40)

= Pp(I(A) (|η| − Np)) (1.41)

= ∑
e

Pp(I(A) (I(e)− p)) (1.42)

= ∑
e

Pp(I(A) I(e))− pPp(A) (1.43)

= ∑
e

pPp(Ae)− p(pPp(Ae) + (1− p)Pp(Ae)) (1.44)

where I(e) = I(e open) = ω(e), so |η| = ∑e I(e).

This completes the proof.

1.7 Back to Percolation

Let Ld = (Zd, Ed), 0 < p < 1, and measure Pp. Let N be the number

of open clusters. Then

Pp(N ≥ 1) =

0 p < pc

1 p > pc

(1.45)
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Then θ(p) = Pp(0 ∈ infinite open cluster). So

θ =

0 p < pc

> 0 p > pc

(1.46)

To show (??) implies (??), we have Pp(N ≥ 1) ≤ ∑x∈Zd Pp(x ∈
infinite open cluster) = ∑x 0 = 0.

To show (??) implies (??), by Kolmogrov’s zero-one law, we have

Pp(N ≥ 1) ∈ {0, 1}, but Pp(N ≥ 1) ≥ θ(p) > 0 for p > pc.

Theorem 1.29 (Uniqueness of infinite cluster). For all 0 < p < 1, either

Pp(N = 0) = 1 (1.47)

or

Pp(N = 1) = 1 (1.48)

Proof. Fix p ∈ (0, 1).

Lemma 1.30 (Part A). There exists k = kp ∈ {0, 1, , 2, . . . , } ∪ {∞} with

Pp(N = k) = 1.

Proof. Łd comes equipped with a shift translation, and the measure

is invariant under this shift. Thus N = N(ω) is invariant under the

shift.

This proof requires this lemma.

Lemma 1.31. Any shift-invariant random variable on (Ω,F , Pp) is almost

surely constant.

Proof. Elementary application of measure theory.

Lemma 1.32 (Part B). kp ∈ {0, 1, ∞} - the “finite-energy property”.

Proof. Suppose 2 ≤ kp < ∞.

Find n such that Pp(Λnintersections ≥ 2 infinite open clusters) >
1
2 . Follow this argument? p93 in

Probability on Graphs

Follow this argument? p93 in

Probability on Graphs
Lemma 1.33 (Part C). kp 6= ∞.

Proof. Say x is a trifurcation if
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(i) |Cx| = ∞.

(ii) The removal of x breaks Cx into three disjoint infinite clusters.

Then τ = Pp(x is a trifurcation) is independent of x.

We claim τ > 0. To show this, take a large diamond box that

intersects with at least three open clusters. Then there exists n such

that Pp(Sn intersects ≥ 3 infinite open clusters) > 1
2 .

Thus τ > 0.

The argument is then that we use the ration beween boundary and

volume to bound the number of trifuricatinos in An, and show that

this leads to a contradiction for large n.

Fill in rest of proof. Required

to understand high-level

ideas and key steps around

the graphs

Fill in rest of proof. Required

to understand high-level

ideas and key steps around

the graphs

N.B. - consider the corresponding proof for site percolation. For

x, y, z ∈ ∂S, does there exist open paths to zero?

1.8 Percolation in Two Dimensions

There are two models, bond percolation on L2, and site percolation

on Π, the triangular lattice.

The triangular lattice is “self-matching”, in that the dual construc-

tion is on the same lattice as the primal (c.f. the dual of the square

lattice).

1.8.1 Bond percolation on Z2, Site Percolation on T

Theorem 1.34. For bond percolation on Z2, Θ( 1
2 ) = 0.

Proof (Proof of Zhang). Let p = 1
2 and suppose Θ( 1

2 ) > 0. Since

Θ( 1
2 ) > 0, then the probability there exists an infinite open cluster is

one.

Let Tn = [0, n]2. As n goes to infinity, then the probability that Tn

intersects with the infinite open cluster tends to one. Thus, find N

such that for all n > N, P(Tn intersects the infinite open cluster) is

greater than 1− 1
8

4
.

Consider At be the event that the top of Tn is joined to the in-

finite open cluster. Define Ab, Al , Ar to be the bottom, left, and
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right analogues. Then P(Tn does not intersects the infinite cluster)

is P
(

At ∩ Ab ∩ Al ∩ Ar
)
≥ P

(
Au
)4 for u = t, b, l, r.

Then we have P(Au) ≥ 7
8 by the given result.

Let n = N + 1. Pass to the dual percolation, ...

Fill this in from the Probabil-

ity on Graphs book. Doesn’t

look too difficult.

Fill this in from the Probabil-

ity on Graphs book. Doesn’t

look too difficult.1.8.2 Site percolation on Π

Π has the vertex set {mĩ + nj̃ : m, n ∈ Z}, ĩ = (1, 0), j̃ = 1
2 (1,
√

3)

when embedded into R2.

Now, consider a box in R2, with vertices (0, 0) and (a, b) with

a ∈N, b ∈
√

32N.

Each site is black with probability 1
2 , and white otherwise. Let

Ha,b = {L ↔black R ∈ Ra,b where L is the left edge and R is the

right edge. That is, Ha,b is the event that there exitss a black path that

traverses Ra,b from L(Ra,b) to R(Ra,b).

Then we have the lemma as follows:

Lemma 1.35 (RSW Lemma).

P(H2a,b) ≥
1
4

P(Ha,b)
2 . (1.49)

Proof on p100-105 in bookProof on p100-105 in book

Theorem 1.36. pc(bond, T) = 1
2

Theorem 1.37. pc ≥ 1
2 , and in fact Θ( 1

2 ) = 0 for the bond model on Z2.

Proof. Following p 122 of the book.

We need to prove that pc ≤ 1
2 - that is Θ(p) > 0 for p > 1

2 .

Let Hn = H16n,n
√

3 be the event that a black crossing of R16n,n
√

3 ex-

ists. By the previous lemma,s there exists τ > 0 such that P 1
2
(Hn) ≥

τ for some τ > 0. Let 1
2 ≤ p ≤ 3

4 .

Then

(1− p)In,p(x) ≤ P1−p(Rad(Cx) ≥ n) ≤ P 1
2
(Rad(C0) ≥ n) = νn → 0

(1.50)

where Rad(Cx) = max{|y− x| : x ↔ y}.
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So we have

d
dp

Pp(Hn) ≥ cτ(1−Pp(Hn)) log
1

8νn
(1.51)

and integrating gives

∫ p

1
2

g′(p)
1− g(p)

dp ≥ cτ log
1

8νn
(p− 1

2
) (1.52)

and so Pp(Hn) ≥ 1− (1− τ)(8νn)
cτ(p− 1

2 ) → 1 as n→ ∞ if p > 1
2 .

... Fill in rest of proof (block

argument)

Fill in rest of proof (block

argument)

1.9 Cardy’s Formula

Given a Jordan curve on R2, there exists a conformal map from D to

the interior of the equilateral triangle T of C with vertices A = 0, B =

1, C = e
πi
3 and such that φ can be extended to the boundary ∂D in

such a way that it becomes a homeomorphism from D ∪ ∂D to the

closed triangle T.

Theorem 1.38 (Cardy’s Formula).

Pδ(ac↔ bx in D)→ |BX| (1.53)

as δ→ 0.

Fill in the rest of the proof of

Cardy’s formula.

Fill in the rest of the proof of

Cardy’s formula.
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Self Avoiding Walks

Consider G a graph, with γ is a self avoiding walk which visits each

vertex of G at most once.

Gn(v) is the number of self avoiding walks with length n. We

assume G is transitive. Then Gn is submultiplicative, and we defined

K(G) = lim
n→∞

√
Gnn (2.1)

For examples K(d − ary − tree) = d − 1, and K(G) ≤ ∆ − 1

(exercise).

Theorem 2.1. K(H1) =
√

2 +
√

2.

2.1 Generating Functions

Z(z) =
z|γ|

∑
γSAW

∞

∑
n=1

Gn · zn (2.2)

Cauchy-Hadarmad gives the radius of convergence is 1
limn→∞

√
Gnn

=

1
K(G)

Fill in proof of
√

2 +
√

2Fill in proof of
√

2 +
√

2

2.2 Random Clusters Model/FK (Fortun-Kostelyn) Percolation

Definition 2.2. G = (V, E), Ω = {0, 1}E, for ω ∈ Ω, k(ω) is the

number of open clusters.
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The RC measure p ∈ [0, 1], q ∈ (0, ∞),

φp,q(w) =
1

Zp,q
∏
e∈E

p(ω(e))(1− p)1−ω(e))qk(w) (2.3)

(i) q = 1 is standard percolation,

(ii) p, q→ 0 with q
p → 0 is electrical networks.

(iii) For q = 2, we have the FK Isiing model, where for ω ∈ {0, 1}E, for

each open cluster of ω, we set the spins/states of the vertices of it

to ±1 iwht equal probability, so G ∈ {±1}V , with

µβ(G) =
1

Zβ
exp(β ∑

x∼y
GxGy) (2.4)

and p = 1− e−β.

Our aim is to define the random cluser measure on (Zd, Ed). Let Λ

be a a finite box in Zd. Let En = {(u, v) ∈ Ed|u,v∈Λ. Let b = 0, 1, and

Ωb
Λ = {ω ∈ Ω = {0, 1}Ed |ω(e) = b∀e /∈ Λ}.
Let φb

Λ,p,q(ω) = 1
Zλ,p,q

(∏e∈En pω(e)(1− p)1−ω(e))qk(ω,Λ).
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