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1. Probability and Bayes theorem for discrete observables

Definition. Suppose we want to predict a random quantity X, and we

do so by providing a probability distribution P . Suppose we observed a
specific value x, then a scoring rule S provides a reward S(P, x). If the

true distribution of X is Q, then the expected score is denoted S(P,Q),

where S(P,Q) = intSP (, x)Q(x)dx. A proper scoring rule has S(Q,Q) ≥
S(P,Q) for all P , and is strictly proper if S(Q,Q) = S(P,Q) if and only

if P = Q.

Theorem. For a null hypothesis H0, H1 as “not H0”,

p(H0|y)

p(H1|y)
=
p(y|H0)

p(y|H1)
×
p(H0)

p(H1)
, (1.1)

posterior odds equals the likelihood ratio times prior odds.

Definition. We have observed quantities y (the data), have an unknown
quantity taking on a set of discrete values θi, i ∈ 1, . . . , n. We specify a

sampling model p(y|θ), a probability distribution p(θi), and together define
p(y, θi) = p(y|θi)p(θi) - a “full probability model”.

Then, use Bayes theorem to botain the conditional probability distribu-

tion for unobserved qunaitites given the data,

p(θi|y) =
p(y|θi)p(θi)∑
k p(y|θk)p(θk)

∝ p(y|θi)p(θi) (1.2)

or equivalently, the posterior is proportional to the likelihood times the
prior.

Definition. θ ∼ Beta(a, b) represents a Beta distribution with properties

p(θ|a, b) =
Γ(a, b)

Γ(a)Γ(b)
θa−1(1− θ)b−1), θ ∈ (0, 1) (1.3)

E(θ a, b) =
a

a+ b
(1.4)

V(θ|a, b) =
ab

(a+ b)2(a+ b+ 1)
(1.5)

mode =
a− 1

a+ b− 2
(a, b > 0) (1.6)

(1.7)

where Γ(a) = (a− 1)! is a is an integer.

Theorem. Our parametric sampling distribution p(y|θ) with uncertainty
about θ given by a distribution p(θ) gives a predictive distribution p(y) =∫
p(y|θ)p(θ)dθ. The mean and variance of a predictive distribution can be

obtained using

E(Y ) = Eθ(E(Y |θ)) (1.8)

V(Y ) = Eθ(V(Y |θ)) + Vθ(E(Y |θ)) (1.9)

Theorem. For two random variables with joint density p(x, y), then
E(Y ) = EX(E(Y |x)) and V(Y ) = EX(V(Y |x)) + VX(E(Y |x)).

Definition. Suppose θ ∼ Beta(a, b), Y ∼ Binomial(θ, n). The exact

predictive distribution for Y is known as the BetaBinomial with

p(y) =
Γ(a+ b)

Γ(a)Γ(b)

(n
y

)Γ(a+ y)Γ(b+ n− y)

Γ(a+ b+ n)
, y = 0, 1, 2, . . . , n (1.10)

If a = b = 1 (the prior is uniform on 0, 1), then p(y) is uniform on

0, 1, . . . , n.

The mean and variance of the BetaBinomial is given as E(Y ) = na
a+b

and V(Y ) = n ab
(a+b)2

(n+a+b)
(1+a+b)

Definition. The Gamma distribution is a flexible distribution for positive
quantities. If Y ∼ Gamma(a, b), then

p(y|a, b) =
ba

Γ(a)
ya−1e−by , y ∈ (0,∞) (1.11)

E(Y |a, b) =
a, b

den
(1.12)

V(Y |a, b) =
a

b2
(1.13)

The Gamma(1, b) distribution is exponential with mean 1
b

. The Gamma( ν
2
, 1

2
)

is a chi-squared χ2
ν with ν degrees of freedom.

Theorem. Suppose θ ∼ Gamma(a, b), Y ∼ Poisson(θ), then the exact
predictive distribution of Y is negative-binomial with

p(y) =
Γ(a+ y)

Γ(a)Γ(y + 1)

ba

(b+ 1)a+y
, y = 0, 1, 2, . . . (1.14)

E(Y ) =
a

b
(1.15)

V(Y ) =
a

b
+

a

b2
(1.16)

Theorem. Consider the general one-parameter exponential family

p(y|θ) = exp(a(y) + b(θ) + u(θ)t(y)) (1.17)

where u(θ) is a natural or canonical parameter, and t(y) is the natural
sufficient statistic.

Suppose we have a conjugate prior distribution of the form p(θ) =
1

c(n0,t0)
exp(n0b(θ) + t0µ(0)) where c(n0, t0) =

∫
exp(n0b(θ) + t0u(θ))dθ.

Then the predictive distribution is

p(y) = ea(y) c(n0 + 1, t0 + t(y))

c(n0, t0)
. (1.18)

2. Conjugate Analysis

Theorem. Suppose we have a independent sample of data yi ∼ Normal(µ, σ2),
i = 1, . . . , n, with σ2 known and µ unknown. The conjugate prior for the

normal mean is also normal, µ, µ ∼ Normal(γ, τ2), where γ and τ2 = σ2

n0

are specified. The posterior distribution is

p(µ y) ∝ p(µ)

n∏
i=1

p(yi|µ) = Normal(yn, τ
2
n) (2.1)

where γn = n0γ+ny
n0+n

and τ2
n = σ2

n0+n
.

The posterior predictive distribution is thus Normal(γn, σ2 + τ2
n).

Theorem. Suppose again yi ∼ N(µ, σ2), but µ is known σ2 is unknown.

If we use precision ω = 1
σ2 , we have the conjugate prior for ω as ω ∼

Gamma(α, β), so p(ω) ∝ wα−1 exp(−βω). σ2 has an inverse-gamma

distribution.

The posterior distribution has the form p(ω|µ, y) = Gamma(α+ n
2
, β+

1
2

∑n
i=1(yi − µ)2).

Theorem. If we have I possible prior distributions pi(θ) with weights qi,

then the mixture prior is p(θ) =
∑
i qipi(θ). If we now observe data y, the

posterior for θis p(θ|y) = q′ip(θ|y,Hi), where p(θ|y,Hi) ∝ p(y|θ)p(θ|Hi),
where q′i = p(Hi|y) =

qip(y|Hi)∑
i qip(y|Hi)

where p(y|Hi) =
∫
p(y|θ)p(θ|Hi)dθ is

the predictive probability of the data y assuming Hi.

Theorem. In a general one-parameter exponential family, we have p(y|θ) =
exp(

∑
i a(yi)+nb(θ)+u(θ)

∑
i t(yi)) and prior p(θ) ∝ exp(n0b(θ) = t0u(θ))

so the posterior distribution is

p(θ|y) ∝ exp((n+ n0)b(θ) + u(θ)(
∑
i

t(yi) + t0)) (2.2)

which is in the same family as the prior distribution. t0 can be thought of

as the sum of n0 imaginary distributions.

3. Prior Distributions

Theorem. If 1
σ2 |y ∼ Gamma(α, β), then 2β

σ2 ∼ χ2
2α.

If Z ∼ Normal(0, 1), X ∼ χ2
ν
ν
∼ tν .

Definition. A Jeffreys prior is compatible with a Jeffrey’s prior for any

1− 1 transformation φ = f(Θ).

1
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p(θ) ∝ I(θ)
1
2 where I(θ) is the Fisher information for θ,

I(θ) = −EY |θ(
∂2 log p(Y |θ)

∂θ2
) = EY |θ((

∂ log p(Y |θ)
∂θ

)2) (3.1)

This is invariant to re-parameterization as

EY |φ(
∂ log p(Y |φ)

∂φ
)2 = EY |θ(

∂ log p(Y |θ)
∂θ

)2|
∂θ

∂φ
|2 = I(θ)|

∂θ

∂φ
|2 (3.2)

Definition. For location parameters, p(y|θ) is a function of y − θ, and
the distribution of y − θ is independent of θ, hence pJ (θ) ∝ C constant.

Can us dflat() in winbugs or a proper distribution such as dunif(-100,

100)

Definition. For count/rate parameters, the Fisher information for Pois-

son data is I(θ) = 1
θ

, and so the Jeffreys prior is pJ (θ) ∝ 1√
θ

, which can

be approximated by a dgamma(0.5, 0.000001) distribution in BUGS.
This same prior is appropriate if θ is a rate parameter per unit time

— so Y ∼ Poission(θt).

Definition. σ is a scale parameter if p(y|σ) = 1
σ
f( y
σ

) for some function

f , so that the distribution of Y
σ

does not depend on σ. The Jeffreys prior

is pJ (σ) ∝ σ−1. This implies that pj(σ
k) ∝ σ−k, for any choice of

k, and thus for the precision of the normal distribution, we should have
pJ (ω) ∝ ω−1, which can be approximated by dgamma(0.0001, 0.0001) in

BUGS (an inverse-gamma distribution on the variance σ2).

4. Multivariate Distributions

Definition. Array of counts (n1, . . . , nk) in K categories — the multino-

mial density is p(n|q) =
(
∑
nk)!∏
nk!

∏K
k=1 q

nk
k , with likelihood propertional to∏K

k=1 q
nk
k . The conjugate prior is a Dirichlet(α1, . . . , αk) distribution

with

p(q) =
Γ(
∑
αk)∏

Γ(ak!)
q
ak−1
k (4.1)

with
∑
k qk = 1. The posterior is p(q|n = Dirichlet(α1 + n1, . . . , αk)).

The Jeffreys prior is p(q)α
∏
k q
− 1

2
k .

Definition. The multivariate normal for a p-dimensional vector y ∼
Normalp(µ,Σ), or using Ω = Σ−1, so p(y|µ,Ω) ∝ exp(− 1

2
(y − µ)TΩ(y −

µ)), and conjugate prior for µ is also a multivariate normal,

p(µ|ψ0,Ω0) ∝ exp(−
1

2
(µ− γ0)TΩ0(µ− γ0)). (4.2)

We then have µ ∼ Normalp(γn,Ω
−1
n ) where Ωn = Ω0 + nΩ and γn =

(Ω0 + nΩ)−1(Ω0γ0 + nΩy).

Definition. The conjugate prior on the precision matrix of a multivariate

normal is the Wishart distribution (analogous to Gamma/χ2).

The Wishart distribution Wp(k,R) for a symmetric positive definite

p× p matrix Ω is p(Ω) ∝ |R|
k
2 |Ω|

k−p−1
2 exp(− 1

2
tr(RΩ)).

The sampling density of a MVN with known mean and unknown matrix

is p(y1, . . . , yn|µ,Ω) ∝ |Ω|
n
2 exp(− 1

2
tr(SΩ)) where S =

∑
i(yi − µ)(yi −

µ)T , and therefore

p(Ω|y) ∝ |Ω|
n+k−p−1

2
exp(− 1

2
tr((S+R)Ω)) (4.3)

which is a Wp(k + n), R+ S distribution.

The Jeffreys prior is p(Σ) ∝ |Σ|−
p+1
2 , equivalently k → 0.

5. Regression Models

Assume for a set of covariates xi1, . . . , xip, E(Yi) = x′iβ, and Yi ∼
N(
∑
βixi, σ

2). Assuming Yiare conditionally independent given β, σ2, we
can write Y ∼ Nn(Xβ, σ2In). The least squares estimate and MLE is

β̂ = (XTX)−1XT y (5.1)

β̂ ∼ Np(β, σ2(XTX)−1) (5.2)

With known variances, assume β ∼ Np(γ0, σ2V ). Then p(β|y) ∝
exp(− 1

2σ2 ((β − γn)TD−1(β − γn)) where D−1 = XTX + V −1, γn =

D(XT y + V −1γ0) = D(XTXβ̂ + V −1γ0), so β|y ∼ Np(γn, σ2D). As

V −1 → 0, we have B|y ∼ Np(β̂, (XTX)−1σ2).
With p(β) ∝ C and p(σ2) ∝ σ−2, then conditional on σ2, from the pre-

ceding general model β|y, σ2 ∼ Nn(β̂, (XTX)−1σ2) where β̂ = (XTX)−1XT y.

Since β|y, σ2 ∼ Np(β̂, (XTX)−1σ2), a single regression coefficient βi
has posterior βi|y, σ2 ∼ N(β̂i, s

2
i σ

2), where s2i = (XTX)−1
ii .

6. Categorical Data, Prediction, and Ranking

Suppose N individuals are classified according to two binary variables,

into a 2 × 2 table. We have three situations — one margin fixed, both

margins fixed, and the overall total fixed.
If one margin is fixed, then ni, and n2 are fixed. Then yi1 ∼ Binomial(ni, pi).

If no margins are fixed, we only fix the total N =
∑
yij . With a

full multinomial model Y ∼ Multinomial(q,N). Note if we just take

a single row, we have standard BetaBinomial updating, as Y11|n1 ∼
Binomial(n1,

q11
q1.

) from the properties of the multinomial, and q11
q1.

from

the properties of the Dirichlet.

Definition. Recall if Yk ∼ Poisson(µk), and
∑
k Yk = N , then Y |N ∼

Multinomial(q,N). Letting Yk ∼ Poission(µk) and using log-link func-
tion log uk = λ+ αk, give a uniform prior to λ. This is equivalent to as-

suming a multinomial distribution for Y with parameters qk = eαk
sumk

eαk ,

N =
∑
k Yk.

For a 2 × 2 table, we can assume Yij ∼ Poisson(µij) and assume

log µij = φ+αi+βj+γij with the corner constraintsα1 = β1 = γ12+γ11 =

γ21 = 0.
Assuming we have multinomial observations Yi ∼Multinomial(qi, Ni)

with covariates xi = xi1, . . . , xiP . Then we can express log odds of a

category k relative to a baseline category as φk1 = log qik
qi1

=
∑P
p=1 βkpxip,

with category probabilities qik =
exp(

∑
p βkpxip)∑

k
exp(

∑
p βkpxip)

.

Definition. For ranking, assume Oi ∼ Poisson(λiEi), with λi a stan-

dardized mortality rate, with Jeffreys prior ∝ 1√
λi

.

7. Sampling Properties in Relation to Other Methods

Definition. Formally, an exchangeable sequence of random variables is

a finite or infinite sequence X1, X2, . . . of random variables such that for

any finite permutation σ of the indices 1, 2, 3, . . . , (the permutation acts
on only finitely many indices, with the rest fixed), the joint probability

distribution of the permuted sequence

Xσ(1), Xσ(2), Xσ(3), . . . is the same as the joint probability distribution
of the original sequence.

Theorem. If an infinite sequence of binary variables is exchangeable, then
it implies that any finite set p(y1, . . . , yn) =

∫ ∏n
i=1 p(yi|θ)p(θ)dθ for some

density p(θ) (with regularity conditions)

Definition. The likelihood principle: all information about θ provided by
data y is contained in the likelihood ∝ p(y|θ).

Theorem. The statistic t(Y ) is sufficient for θ if and only if we can express
the density (y|θ) in the form p(y|θ) = h(y)g(t(y)|θ).

Trivially, the Bayesian posterior distribution only depends on the suf-

ficient statistic.

8. Criticism and Comparison

Definition. The Bayes factor comparison of models M0 and M1 are given

as
p(M0|y)

p(M1|y)
=
p(M0)

p(M1)

p(y|M0)

p(y|M1)
(8.1)

or in words — posterior odds of M0 equals the Bayes factor (B01) times

the prior odds of M0. This quantifies the weight of evidence in favor of
the hypothesis H0 : M0 is true.

If both models are equally likely a priori, the Bayes factor is the pos-

terior odds in favor of M0.

Definition. The Bayesian Information Criterion (BIC) is

BIC = −2 log p(y|θ̂) + k logn (8.2)

where θ̂ is the MLE. BIC0−BIC1 is intended to approximate −2 logB01

Definition. The deviance of a sampling distribution is defnied as D(θ) =
2 log p(y|θ).

Definition. The AIC is given as −2 log p(y|θ̂) + 2k where kis the dimen-

sionality of θ.
Asmyptitocally, AIC is equivalent to leave-on-out cross-validation.

Definition. Model dimensionality can be measured as pD = Eθ|y(−2 log p(y|θ))+
2 log p(y|θ̃(y)). If we take θ̃ = E(θ|y), then PD is equal to the posterior

mean deviance minus the deviance of the posterior means.
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We can approximate PD ≈ tr(−L′′θC), where C = E
(

(θ − θ)(θ − θ)T
)

is the posterior covariance matrix of θ.
Thus pD can be thought of the ratio of infomration in the likelihood

about the parameters as a fraction of the total information in the poste-

rior. We an also think of pD as the franction of total information in the
posteriro that is identified for the prior.

For general normal regression models, we have this is exact, and pD =

tr((XTX)(XTX + V −1)−1).

If there is vague prior infomration, θ̂ ≈ θ (the MLE), and so D(θ) ≈
D(θ) − (θ − θ)TL′′(θ̂)(θ − θ) = D(θ) + χ2

p, and so pD = E
(
χ2
p

)
= p, the

true number of parameters.

Definition. The DIC is defined as DIC = D(θ) + 2pD = D + pD.

9. Heirachcial Models

Definition. Suppose yij is outcome for individual j, unit i, with unit-

specific parameter θi. The assumption of partial exchangability of indi-
viduals within units can be represented by the following model — yij ∼
p(yij |θi, xij), θi ∼ p(θi).

Assumption of exchangability of units can be represented by the model
θi ∼ p(θi|φ), φ ∼ p(φ) - a common prior for all units (but a prior with

unknown parameters.)
Excchangability is a judgement based on our knowledge of the context.

Assuming θ1, . . . , θI are drawn from some common prior distribution

whose parameters are unknown is known as a hierarchical model.

Definition. The normal-normal model is givens yij ∼ N(θi, σ
2), j =

1, . . . , ni, i = 1, . . . , I, θi ∼ N(µ, τ2), i = 1, . . . , I, µ ∼ Uniform. Assume

σ, τ known for the moment and express τ2 as τ2 = σ2

n0
. From standard

results,

p(θi|y, µ, τ, σ) = Normal(
n0µ+ niyi
n0 + ni

,
σ2

n0 + ni
) (9.1)

Now the marginal distribution of Y i. is Y i. ∼ N(µ, σ2(n−1
i + n−1

0 )).

Writing [σ2(n−1
i +n−1

0 )]−1 as πi, the precision, we have µ|y, τ ∼ N(µ̂, Vµ)

where µ̂ =
∑
i πiyi.∑
i πi

, Vµ = 1∑
i πi

.

We can then show (reasonably easily) that E(πi|y, τ, σ) =
n0µ̂+niyi
n0+ni

— an appropriate weighted average of the observed individual group mean
and estimated population mean.

Definition. For normal hierarchical models the Jeffreys prior can be

inconvenient. Assume yi ∼ N(θi, σ
2
i ), σ2

i known, and θi ∼ N(µ, τ2),

i = 1, . . . , I. Then, integrating out the θi, we get yi|µ, τ2 ∼ N(µ, σ2
i + τ2)

which are conditionally independent given µ, τ2.
The posterior is p(τ2|y) ∝ p(y|µ, τ2)p(τ2) where p(y|µ, τ2) ∝

∏
i(σ

2
i +

τ2)−
1
2 exp(− 1

2

frac(yi − µ)2σ2
i + τ2).

Letting τ2 → 0, p(y|µ, τ2) tends to a non-zero constant c, so p(τ2 <
ε|y) ∝ cP (τ2 < ε).

Using an improper Jeffreys prior p(τ2 ∝ τ−2), p(τ2 < ε) is unbounded,

and so p(τ2 < ε|y) is unbounded, hence the posterior is improper.

Note that 1
τ2
∼ Gamma(ε, ε) is proper, but inference can be sensitive

to the choice of ε.

Definition. Empirical Bayes methods proceed as before yij ∼ p(yij |θi),
θi ∼ p(θi|φ), but do not put a prior on φ. Estimate φ by, for example,

maximum marginal likelihood — the value φ̂ that maximizes the marginal

likelihood

p(y|φ) =
∏
i

∫ ∏
j

p(yij |θi)p(θi|φ)dθi, (9.2)

known as the Type II Maximum Likelihood. Then use φ̂ as a “plug-in”
estimate, as if the prior distribution was known.

Can think of it as estimating prior from the data — understates un-

certainty since it ignores uncertainty in φ̂ — for large number of units

and observations, have similar results to the “full Bayes” approach.

Further content on
hierarchical model
comparison

Further content on
hierarchical model
comparison 10. Robustness and Outlier Detection

Definition. If we assume, say Y ∼ tk(θ, τ), then estimates will be less
influenced by outliers. If we want to simultaneously find outliers, we can

fit a t-distribution as a mixture of normals. Recall if Y ∼ Norm(θ, σ2),

and σ2 = τ2k
X2 , where X2 ∼ χ2

k, then Y ∼ tk(θ, τ). So an equivalent model

to Y ∼ tk(θ, τ) is to assume Y ∼ Normal(θ, σ2
i ), σ2

i = τ2k
X2
i

, X2
i ∼ χ2

k,

and monitor si = k
X2
i

— values of si much great than 1 indicate outliers.

11. Miscellaneous

References
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Table 1. Conjugate Prior Distributions

L P ConjP Posterior Predictive Interpretation

Binomial θ Beta(a, b) a+ y, b+ n− y BetaBinomial(y) α− 1 successes, β − 1 failures

Poisson θ Gamma(a, b) a+ y, b+ n NegativeBinomial(y) α total occurences in β intervals

Normal µ Normal(γ, σ
2

n0
) n0γ+ny

n0+n
, σ2
n = σ2

n0+n
Normal(γn, σ2 + σ2

n) n0 observations with sample mean γ

Normal µ Normal(γ, τ0) (precision) τ0γ+ny
τ0+nτ

, τn = τ0 + nτ Normal(γn,
1
τn

+ 1
τ

)

Normal σ2 = 1
ω

ω ∼ Gamma(n0
2
,
n0σ

2
0

2
) n0+n

2
,
n0σ

2
0

2
+ 1

2

∑
(yi − µ)2

Multinomial p1, . . . , pk Dirichlet(α1, . . . , αk) α1 + n1, . . . , αk + nk αi − 1 occurences of category i

Table 2. Distributions

Distribution Density Mean Variance

Normal(µ, σ2) 1√
2πσ2

exp(− (x−µ)2

2σ2 ) µ σ2

Poisson(λ) e−λλk

k!
λ λ

Gamma(a, b) ba

Γ(a)
xa−1e−bx a

b
a
b2

Beta(a, b)
Γ(a+b)

Γ(a)Γ(b)
xa−1(1− x)b−1 a

a+b
ab

(a+b)2(a+b+1)

Dirichlet(α1, . . . , αK) ∝
∏K
i=1 x

αi−1
i

αi∑
k αk
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