APPLIED BAYESIAN STATISTICS SUMMARY

ANDREW TULLOCH

quantities. If
$$Y \sim \text{GAMMA}(a, b)$$
, then

$$p(y|a, b) = \frac{b^a}{D(a)} y^{a-1} e^{-by}, y \in (0, \infty)$$
(1.11)

Definition. The Gamma distribution is a flexible distribution for positive

$$\mathbb{E}(Y|a,b) = \frac{a,b}{den} \tag{1.12}$$

$$\mathcal{V}(Y|a,b) = \frac{a}{b^2} \tag{1.13}$$

1. PROBABILITY AND BAYES THEOREM FOR DISCRETE OBSERVABLES The

Definition. Suppose we want to predict a random quantity X, and we do so by providing a probability distribution P. Suppose we observed a specific value x, then a scoring rule S provides a reward S(P, x). If the true distribution of X is Q, then the expected score is denoted S(P,Q), where S(P,Q) = intSP(x)Q(x)dx. A proper scoring rule has $S(Q,Q) \ge$ S(P,Q) for all P, and is strictly proper if S(Q,Q) = S(P,Q) if and only if P = Q.

Theorem. For a null hypothesis H_0, H_1 as "not H_0 ",

$$\frac{p(H_0|y)}{p(H_1|y)} = \frac{p(y|H_0)}{p(y|H_1)} \times \frac{p(H_0)}{p(H_1)},$$
(1.1)

posterior odds equals the likelihood ratio times prior odds.

Definition. We have observed quantities y (the data), have an unknown quantity taking on a set of discrete values $\theta_i, i \in 1, ..., n$. We specify a sampling model $p(y|\theta)$, a probability distribution $p(\theta_i)$, and together define $p(y, \theta_i) = p(y|\theta_i)p(\theta_i)$ - a "full probability model".

Then, use Bayes theorem to botain the conditional probability distribution for unobserved quaaitites given the data,

$$p(\theta_i|y) = \frac{p(y|\theta_i)p(\theta_i)}{\sum_k p(y|\theta_k)p(\theta_k)} \propto p(y|\theta_i)p(\theta_i)$$
(1.2)

or equivalently, the posterior is proportional to the likelihood times the prior.

Definition.
$$\theta \sim \text{Beta}(a, b)$$
 represents a Beta distribution with properties

$$p(\theta|a,b) = \frac{\Gamma(a,b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}), \theta \in (0,1)$$
(1.3)

$$\mathbb{E}(\theta \ a, b) = \frac{a}{a+b} \tag{1.4}$$

$$\mathbb{V}(\theta|a,b) = \frac{ab}{(a+b)^2(a+b+1)}$$
(1.5)

$$mode = \frac{a-1}{a+b-2}(a,b>0)$$
(1.6)
(1.7)

where $\Gamma(a) = (a-1)!$ is a is an integer.

Theorem. Our parametric sampling distribution $p(y|\theta)$ with uncertainty about θ given by a distribution $p(\theta)$ gives a predictive distribution p(y) = $\int p(y|\theta)p(\theta)d\theta$. The mean and variance of a predictive distribution can be obtained using

$$\mathbb{E}(Y) = \mathbb{E}_{\theta}(\mathbb{E}(Y|\theta)) \tag{1.8}$$

$$\mathbb{V}(Y) = \mathbb{E}_{\theta}(\mathbb{V}(Y|\theta)) + \mathbb{V}_{\theta}(\mathbb{E}(Y|\theta))$$
(1.9)

Theorem. For two random variables with joint density p(x, y), then $\mathbb{E}(Y) = \mathbb{E}_X(\mathbb{E}(Y|x))$ and $\mathbb{V}(Y) = \mathbb{E}_X(\mathbb{V}(Y|x)) + \mathbb{V}_X(\mathbb{E}(Y|x)).$

Definition. Suppose $\theta \sim \text{BETA}(a, b)$, $Y \sim \text{BINOMIAL}(\theta, n)$. The exact predictive distribution for Y is known as the BETABINOMIAL with

$$p(y) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} {n \choose y} \frac{\Gamma(a+y)\Gamma(b+n-y)}{\Gamma(a+b+n)}, y = 0, 1, 2, \dots, n$$
(1.10)

If a = b = 1 (the prior is uniform on 0,1), then p(y) is uniform on $0, 1, \ldots, n.$

The mean and variance of the BETABINOMIAL is given as $\mathbb{E}(Y) = \frac{na}{a+b}$ and $\mathbb{V}(Y) = n \frac{ab}{(a+b)^2} \frac{(n+a+b)}{(1+a+b)}$

GAMMA(1, b) distribution is exponential with mean
$$\frac{1}{b}$$
. The GAMMA($\frac{\nu}{2}, \frac{1}{2}$)

is a chi-squared χ^2_{ν} with ν degrees of freedom.

Theorem. Suppose $\theta \sim \text{GAMMA}(a, b)$, $Y \sim \text{POISSON}(\theta)$, then the exact predictive distribution of Y is **negative-binomial** with

$$p(y) = \frac{\Gamma(a+y)}{\Gamma(a)\Gamma(y+1)} \frac{b^a}{(b+1)^{a+y}}, y = 0, 1, 2, \dots$$
(1.14)

$$\mathbb{E}(Y) = \frac{a}{b}$$
(1.15)
$$\mathbb{V}(Y) = \frac{a}{b} + \frac{a}{b^2}$$
(1.16)

 $p(y|\theta) = \exp(a(y) + b(\theta) + u(\theta)t(y))$ (1.17)

where $u(\theta)$ is a **natural** or canonical parameter, and t(y) is the **natural** sufficient statistic.

Suppose we have a conjugate prior distribution of the form $p(\theta)$ = $\frac{1}{c(n_0,t_0)} \exp(n_0 b(\theta) + t_0 \mu(0)) \text{ where } c(n_0,t_0) = \int \exp(n_0 b(\theta) + t_0 u(\theta)) d\theta.$ Then the predictive distribution is

$$p(y) = e^{a(y)} \frac{c(n_0 + 1, t_0 + t(y))}{c(n_0, t_0)}.$$
(1.18)

2. Conjugate Analysis

Theorem. Suppose we have a independent sample of data $y_i \sim \text{NORMAL}(\mu, \sigma^2)$, $i = 1, \ldots, n$, with σ^2 known and μ unknown. The conjugate prior for the normal mean is also normal, μ , $\mu \sim \text{NORMAL}(\gamma, \tau^2)$, where γ and $\tau^2 = \frac{\sigma^2}{\tau_0}$ are specified. The posterior distribution is

$$p(\mu \ y) \propto p(\mu) \prod_{i=1}^{n} p(y_i|\mu) = \text{NORMAL}(y_n, \tau_n^2)$$
(2.1)

where $\gamma_n = \frac{n_0 \gamma + n \overline{y}}{n_0 + n}$ and $\tau_n^2 = \frac{\sigma^2}{n_0 + n}$. The posterior predictive distribution is thus NORMAL $(\gamma_n, \sigma^2 + \tau_n^2)$.

Theorem. Suppose again $y_i \sim N(\mu, \sigma^2)$, but μ is known σ^2 is unknown.

If we use precision $\omega = \frac{1}{\sigma^2}$, we have the conjugate prior for ω as $\omega \sim \text{GAMMA}(\alpha,\beta)$, so $p(\omega) \propto w^{\alpha-1} \exp(-\beta\omega)$. σ^2 has an **inverse-gamma** distribution.

The posterior distribution has the form $p(\omega|\mu, y) = \text{GAMMA}(\alpha + \frac{n}{2}, \beta + \beta)$ $\frac{1}{2}\sum_{i=1}^{n}(y_i-\mu)^2).$

Theorem. If we have I possible prior distributions $p_i(\theta)$ with weights q_i , then the mixture prior is $p(\theta) = \sum_{i} q_i p_i(\theta)$. If we now observe data y, the posterior for θ is $p(\theta|y) = q'_i p(\theta|y_i, u_i)$, where $p(\theta|y, H_i) \propto p(y|\theta)p(\theta|H_i)$, where $q'_i = p(H_i|y) = \frac{q_i p(y|H_i)}{\sum_i q_i p(y|H_i)}$ where $p(y|H_i) = \int p(y|\theta)p(\theta|H_i)d\theta$ is the predictive probability of the data y assuming H_i .

Theorem. In a general one-parameter exponential family, we have $p(y|\theta) =$ $\exp(\sum_{i} a(y_i) + nb(\theta) + u(\theta) \sum_{i} t(y_i))$ and prior $p(\theta) \propto \exp(n_0 b(\theta) = t_0 u(\theta))$ so the posterior distribution is

$$p(\theta|y) \propto \exp((n+n_0)b(\theta) + u(\theta)(\sum_i t(y_i) + t_0))$$
(2.2)

which is in the same family as the prior distribution. t_0 can be thought of as the sum of n_0 imaginary distributions.

3. Prior Distributions

Theorem. If $\frac{1}{\sigma^2} | y \sim \text{GAMMA}(\alpha, \beta)$, then $\frac{2\beta}{\sigma^2} \sim \chi^2_{2\alpha}$. If $Z \sim \text{NORMAL}(0,1), X \sim \frac{\chi_{\nu}^2}{\nu} \sim t_{\nu}.$

Definition. A Jeffreys prior is compatible with a Jeffrey's prior for any 1-1 transformation $\phi = f(\Theta)$.

 $p(\theta) \propto I(\theta)^{\frac{1}{2}}$ where $I(\theta)$ is the Fisher information for θ ,

$$I(\theta) = -\mathbb{E}_{Y|\theta}\left(\frac{\partial^2 \log p(Y|\theta)}{\partial \theta^2}\right) = E_{Y|\theta}\left(\left(\frac{\partial \log p(Y|\theta)}{\partial \theta}\right)^2\right)$$
(3.1)

This is invariant to re-parameterization as

$$\mathbb{E}_{Y|\phi}(\frac{\partial \log p(Y|\phi)}{\partial \phi})^2 = \mathbb{E}_{Y|\theta}(\frac{\partial \log p(Y|\theta)}{\partial \theta})^2 |\frac{\partial \theta}{\partial \phi}|^2 = I(\theta)|\frac{\partial \theta}{\partial \phi}|^2 \qquad (3.2)$$

Definition. For location parameters, $p(y|\theta)$ is a function of $y - \theta$, and the distribution of $y - \theta$ is independent of θ , hence $p_J(\theta) \propto C$ constant. Can us dflat() in winbugs or a proper distribution such as dunif(-100, 100)

Definition. For count/rate parameters, the Fisher information for POIS-SON data is $I(\theta) = \frac{1}{\theta}$, and so the Jeffreys prior is $p_J(\theta) \propto \frac{1}{\sqrt{\theta}}$, which can be approximated by a dgamma (0.5, 0.000001) distribution in BUGS.

This same prior is appropriate if θ is a rate parameter per unit time — so $Y \sim Poission(\theta t)$.

Definition. σ is a scale parameter if $p(y|\sigma) = \frac{1}{\sigma}f(\frac{y}{\sigma})$ for some function f, so that the distribution of $rac{Y}{\sigma}$ does not depend on σ . The Jeffreys prior is $p_J(\sigma) \propto \sigma^{-1}$. This implies that $p_j(\sigma^k) \propto \sigma^{-k}$, for any choice of k, and thus for the precision of the normal distribution, we should have $p_J(\omega) \propto \omega^{-1}$, which can be approximated by dgamma(0.0001, 0.0001) in BUGS (an inverse-gamma distribution on the variance σ^2).

4. Multivariate Distributions

Definition. Array of counts (n_1, \ldots, n_k) in K categories — the multinomial density is $p(n|q) = \frac{(\sum n_k)!}{\prod n_k!} \prod_{k=1}^K q_k^{n_k}$, with likelihood propertional to $\prod_{k=1}^{K} q_k^{n_k}$. The conjugate prior is a DIRICHLET $(\alpha_1, \ldots, \alpha_k)$ distribution with

$$p(q) = \frac{\Gamma(\sum \alpha_k)}{\prod \Gamma(a_k!)} q_k^{a_k - 1}$$
(4.1)

with $\sum_{k} q_k = 1$. The posterior is $p(q|n = \text{DIRICHLET}(\alpha_1 + n_1, \dots, \alpha_k))$. The Jeffreys prior is $p(q) \alpha \prod_k q_k^{-\frac{1}{2}}$.

Definition. The multivariate normal for a p-dimensional vector $y \sim$ Normal_p(μ, Σ), or using $\Omega = \Sigma^{-1}$, so $p(y|\mu, \Omega) \propto \exp(-\frac{1}{2}(y-\mu)^T \Omega(y-\mu)^T \Omega(y-\mu))$ (μ)), and conjugate prior for μ is also a multivariate normal,

$$p(\mu|\psi_0,\Omega_0) \propto \exp(-\frac{1}{2}(\mu-\gamma_0)^T \Omega_0(\mu-\gamma_0)).$$
(4.2)

We then have $\mu \sim Normal_p(\gamma_n, \Omega_n^{-1})$ where $\Omega_n = \Omega_0 + n\Omega$ and $\gamma_n =$ $(\Omega_0 + n\Omega)^{-1}(\Omega_0\gamma_0 + n\Omega\overline{y}).$

Definition. The conjugate prior on the precision matrix of a multivariate normal is the Wishart distribution (analogous to Gamma/ χ^2).

The Wishart distribution $W_p(k, R)$ for a symmetric positive definite

 $p \times p \text{ matrix } \Omega \text{ is } p(\Omega) \propto |R|^{\frac{k}{2}} |\Omega|^{\frac{k-p-1}{2}} \exp(-\frac{1}{2}\operatorname{tr}(R\Omega)).$ The sampling density of a MVN with known mean and unknown matrix is $p(y_1, \ldots, y_n | \mu, \Omega) \propto |\Omega|^{\frac{n}{2}} \exp(-\frac{1}{2} \operatorname{tr}(S\Omega))$ where $S = \sum_i (y_i - \mu)(y_i - \mu)(y_$ $(\mu)^T$, and therefore

$$p(\Omega|y) \propto |\Omega|^{\frac{n+k-p-1}{2}} \exp(-\frac{1}{2}\operatorname{tr}((S+R)\Omega))$$
(4.3)

which is a $W_p(k+n), R+S$ distribution.

The Jeffreys prior is $p(\Sigma) \propto |\Sigma|^{-\frac{p+1}{2}}$, equivalently $k \to 0$.

5. Regression Models

Assume for a set of covariates x_{i1}, \ldots, x_{ip} , $\mathbb{E}(Y_i) = x'_i \beta$, and $Y_i \sim$ $N(\sum \beta_i x_i, \sigma^2)$. Assuming Y_i are conditionally independent given β, σ^2 , we can write $Y \sim N_n(X\beta, \sigma^2 I_n)$. The least squares estimate and MLE is

$$\hat{\beta} = (X^T X)^{-1} X^T y \tag{5.1}$$

$$\hat{\beta} \sim N_p(\beta, \sigma^2 (X^T X)^{-1}) \tag{5.2}$$

With known variances, assume $\beta \sim N_p(\gamma_0, \sigma^2 V)$. Then $p(\beta|y) \propto \exp(-\frac{1}{2\sigma^2}((\beta - \gamma_n)^T D^{-1}(\beta - \gamma_n)))$ where $D^{-1} = X^T X + V^{-1}$, $\gamma_n = V^T X + V^{-1}$. $D(X^T y + V^{-1} \gamma_0) = D(X^T X \hat{\beta} + V^{-1} \gamma_0), \text{ so } \beta | y \sim N_p(\gamma_n, \sigma^2 D). \text{ As}$ $V^{-1} \to 0$, we have $B|y \sim N_p(\hat{\beta}, (X^T X)^{-1} \sigma^2)$.

With $p(\beta) \propto C$ and $p(\sigma^2) \propto \sigma^{-2}$, then conditional on σ^2 , from the preceding general model $\beta | y, \sigma^2 \sim N_n(\hat{\beta}, (X^T X)^{-1} \sigma^2)$ where $\hat{\beta} = (X^T X)^{-1} X^T y$ Definition. Model dimensionality can be measured as $p_D = \mathbb{E}_{\theta | y}(-2 \log p(y | \theta)) + (1 + 2 \log p(y | \theta))$

Since $\beta | y, \sigma^2 \sim N_p(\hat{\beta}, (X^T X)^{-1} \sigma^2)$, a single regression coefficient β_i has posterior $\beta_i | y, \sigma^2 \sim N(\hat{\beta}_i, s_i^2 \sigma^2)$, where $s_i^2 = (X^T X)_{ii}^{-1}$.

6. CATEGORICAL DATA, PREDICTION, AND RANKING

Suppose N individuals are classified according to two binary variables, into a 2×2 table. We have three situations — one margin fixed, both margins fixed, and the overall total fixed.

If one margin is fixed, then n_i , and n_2 are fixed. Then $y_{i1} \sim \text{BINOMIAL}(n_i, p_i)$. If no margins are fixed, we only fix the total $N = \sum y_{ij}$. With a full multinomial model $Y \sim \text{MULTINOMIAL}(q, N)$. Note if we just take single row, we have standard BetaBinomial updating, as $Y_{11}|n_1 \sim$ BINOMIAL $(n_1, \frac{q_{11}}{q_{1.}})$ from the properties of the multinomial, and $\frac{q_{11}}{q_{1.}}$ from the properties of the Dirichlet.

Definition. Recall if $Y_k \sim \text{POISSON}(\mu_k)$, and $\sum_k Y_k = N$, then $Y|N \sim$ MULTINOMIAL(q, N). Letting $Y_k \sim Poission(\mu_k)$ and using log-link function $\log u_k = \lambda + \alpha_k$, give a uniform prior to λ . This is equivalent to assuming a multinomial distribution for Y with parameters $q_k = \frac{e^{\alpha_k}}{sum_k} e^{\alpha_k}$, $N = \sum_{k} Y_k.$

For a 2 \times 2 table, we can assume $Y_{ij} \sim {\rm Poisson}(\mu_{ij})$ and assume $\log \mu_{ij} = \phi + \alpha_i + \beta_j + \gamma_{ij}$ with the corner constraints $\alpha_1 = \beta_1 = \gamma_{12} + \gamma_{11} = \beta_1$ $\gamma_{21} = 0.$

Assuming we have multinomial observations $Y_i \sim \text{MULTINOMIAL}(q_i, N_i)$ with covariates $x_i = x_{i1}, \ldots, x_{iP}$. Then we can express log odds of a category k relative to a baseline category as $\phi_{k1} = \log \frac{q_{ik}}{q_{i1}} = \sum_{p=1}^{P} \beta_{kp} x_{ip}$, with category probabilities $q_{ik} = \frac{\exp(\sum_p \beta_{kp} x_{ip})}{\sum_k \exp(\sum_p \beta_{kp} x_{ip})}$.

Definition. For ranking, assume $O_i \sim \text{POISSON}(\lambda_i E_i)$, with λ_i a standardized mortality rate, with Jeffreys prior $\propto \frac{1}{\sqrt{\lambda_i}}$.

7. SAMPLING PROPERTIES IN RELATION TO OTHER METHODS

Definition. Formally, an exchangeable sequence of random variables is a finite or infinite sequence X_1, X_2, \ldots of random variables such that for any finite permutation σ of the indices $1, 2, 3, \ldots$, (the permutation acts on only finitely many indices, with the rest fixed), the joint probability distribution of the permuted sequence

 $X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}, \dots$ is the same as the joint probability distribution of the original sequence.

Theorem. If an infinite sequence of binary variables is exchangeable, then it implies that any finite set $p(y_1, \ldots, y_n) = \int \prod_{i=1}^n p(y_i|\theta) p(\theta) d\theta$ for some density $p(\theta)$ (with regularity conditions)

Definition. The likelihood principle: all information about θ provided by data y is contained in the likelihood $\propto p(y|\theta)$.

Theorem. The statistic t(Y) is sufficient for θ if and only if we can express the density $(y|\theta)$ in the form $p(y|\theta) = h(y)g(t(y)|\theta)$.

Trivially, the Bayesian posterior distribution only depends on the sufficient statistic.

8. CRITICISM AND COMPARISON

Definition. The Bayes factor comparison of models M_0 and M_1 are given as

$$\frac{p(M_0|y)}{p(M_1|y)} = \frac{p(M_0)}{p(M_1)} \frac{p(y|M_0)}{p(y|M_1)}$$
(8.1)

or in words — posterior odds of M_0 equals the Bayes factor (B_{01}) times the prior odds of M_0 . This quantifies the weight of evidence in favor of the hypothesis $H_0: M_0$ is true.

If both models are equally likely a priori, the Bayes factor is the posterior odds in favor of M_0 .

Definition. The Bayesian Information Criterion (BIC) is

$$BIC = -2\log p(y|\theta) + k\log n \tag{8.2}$$

where $\hat{\theta}$ is the MLE. $BIC_0 - BIC_1$ is intended to approximate $-2\log B_{01}$

Definition. The deviance of a sampling distribution is defined as $D(\theta) =$ $2\log p(y|\theta).$

Definition. The AIC is given as $-2\log p(y|\hat{\theta}) + 2k$ where kis the dimensionality of θ .

Asmyptitocally, AIC is equivalent to leave-on-out cross-validation.

 $2\log p(y|\tilde{\theta}(y))$. If we take $\tilde{\theta} = \mathbb{E}(\theta|y)$, then P_D is equal to the posterior mean deviance minus the deviance of the posterior means.

We can approximate $P_D \approx \operatorname{tr}(-L''_{\theta}C)$, where $C = \mathbb{E}\left((\theta - \overline{\theta})(\theta - \overline{\theta})^T\right)$ is the posterior covariance matrix of θ .

Thus p_D can be thought of the ratio of infomration in the likelihood about the parameters as a fraction of the total information in the posterior. We an also think of p_D as the franction of total information in the posteriro that is identified for the prior.

For general normal regression models, we have this is exact, and $p_D =$ $tr((X^T X)(X^T X + V^{-1})^{-1}).$

If there is **vague** prior information, $\hat{\theta} \approx \overline{\theta}$ (the MLE), and so $D(\theta) \approx$ $D(\overline{\theta}) - (\theta - \overline{\theta})^T L''(\hat{\theta})(\theta - \overline{\theta}) = D(\overline{\theta}) + \chi_p^2$, and so $p_D = \mathbb{E}(\chi_p^2) = p$, the true number of parameters.

Definition. The **DIC** is defined as $DIC = D(\overline{\theta}) + 2p_D = \overline{D} + p_D$.

9. Heirachcial Models

Definition. Suppose y_{ij} is outcome for individual j, unit i, with unitspecific parameter θ_i . The assumption of partial exchangability of individuals within units can be represented by the following model $-y_{ij} \sim$ $p(y_{ij}|\theta_i, x_{ij}), \ \theta_i \sim p(\theta_i).$

Assumption of exchangability of units can be represented by the model $\theta_i \sim p(\theta_i | \phi), \ \phi \sim p(\phi)$ - a common prior for all units (but a prior with unknown parameters.)

Exchangability is a judgement based on our knowledge of the context.

Assuming $\theta_1, \ldots, \theta_I$ are drawn from some common prior distribution whose parameters are unknown is known as a hierarchical model.

Definition. The normal-normal model is given $y_{ij} \sim N(\theta_i, \sigma^2), j =$ $1, \ldots, n_i, i = 1, \ldots, I, \theta_i \sim N(\mu, \tau^2), i = 1, \ldots, I, \mu \sim Uniform.$ Assume σ, τ known for the moment and express τ^2 as $\tau^2 = \frac{\sigma^2}{n_0}$. From standard results.

$$p(\theta_i|y,\mu,\tau,\sigma) = \text{NORMAL}(\frac{n_0\mu + n_i\overline{y}_i}{n_0 + n_i}, \frac{\sigma^2}{n_0 + n_i})$$
(9.1)

Now the marginal distribution of $\overline{Y}_{i.}$ is $\overline{Y}_{i.} \sim N(\mu, \sigma^2(n_i^{-1} + n_0^{-1})).$ Writing $[\sigma^2(n_i^{-1}+n_0^{-1})]^{-1}$ as π_i , the precision, we have $\mu|y, \tau \sim N(\hat{\mu}, V_{\mu})$ where $\hat{\mu} = \frac{\sum_i \pi_i \overline{y}_i}{\sum_i \pi_i}$, $V_{\mu} = \frac{1}{\sum_i \pi_i}$.

We can then show (reasonably easily) that $\mathbb{E}(\pi_i|y,\tau,\sigma) = \frac{n_0\hat{\mu} + n_i\overline{y}_i}{n_0+n_1}$ - an appropriate weighted average of the observed individual group mean and estimated population mean.

Definition. For normal hierarchical models the Jeffreys prior can be inconvenient. Assume $y_i \sim N(\theta_i, \sigma_i^2), \ \sigma_i^2$ known, and $\theta_i \sim N(\mu, \tau^2),$ $i = 1, \ldots, I$. Then, integrating out the θ_i , we get $y_i | \mu, \tau^2 \sim N(\mu, \sigma_i^2 + \tau^2)$ which are conditionally independent given μ, τ^2 .

The posterior is $p(\tau^2|y) \propto p(y|\mu,\tau^2)p(\tau^2)$ where $p(y|\mu,\tau^2) \propto \prod_i (\sigma_i^2 + \sigma_i^2)$

 $\begin{array}{l} \tau^2)^{-\frac{1}{2}} \exp(-\frac{1}{2} \\ frac(y_i - \mu)^2 \sigma_i^2 + \tau^2). \\ Letting \ \tau^2 \rightarrow 0, \ p(y|\mu, \tau^2) \ tends \ to \ a \ non-zero \ constant \ c, \ so \ p(\tau^2 < \tau^2) \\ \end{array}$ $\epsilon | y) \propto c P(\tau^2 < \epsilon).$

Using an improper Jeffreys prior $p(\tau^2 \propto \tau^{-2})$, $p(\tau^2 < \epsilon)$ is unbounded, and so $p(\tau^2 < \epsilon | y)$ is unbounded, hence the posterior is improper.

Note that $\frac{1}{\tau^2} \sim \text{GAMMA}(\epsilon, \epsilon)$ is proper, but inference can be sensitive to the choice of ϵ .

Definition. Empirical Bayes methods proceed as before $y_{ij} \sim p(y_{ij}|\theta_i)$, $\theta_i \sim p(\theta_i | \phi)$, but do not put a prior on ϕ . Estimate ϕ by, for example, maximum marginal likelihood — the value $\hat{\phi}$ that maximizes the marginal likelihood

$$p(y|\phi) = \prod_{i} \int \prod_{j} p(y_{ij}|\theta_i) p(\theta_i|\phi) d\theta_i, \qquad (9.2)$$

known as the **Type II Maximum Likelihood**. Then use $\hat{\phi}$ as a "plug-in" estimate, as if the prior distribution was known.

Can think of it as estimating prior from the data — understates uncertainty since it ignores uncertainty in $\hat{\phi}$ — for large number of units and observations, have similar results to the "full Bayes" approach.

10. Robustness and Outlier Detection

Definition. If we assume, say $Y \sim t_k(\theta, \tau)$, then estimates will be less influenced by outliers. If we want to simultaneously find outliers, we can fit a t-distribution as a mixture of normals. Recall if $Y \sim Norm(\theta, \sigma^2)$, and $\sigma^2 = \frac{\tau^2 k}{\chi^2}$, where $X^2 \sim \chi_k^2$, then $Y \sim t_k(\theta, \tau)$. So an equivalent model

to
$$Y \sim t_k(\theta, \tau)$$
 is to assume $Y \sim \text{NORMAL}(\theta, \sigma_i^2)$, $\sigma_i^2 = \frac{\tau^2 k}{X_i^2}$, $X_i^2 \sim \chi_k^2$,
and monitor $s_i = \frac{k}{X_i^2}$ — values of s_i much great than 1 indicate outliers.

11. Miscellaneous

References

4

L	Р	ConjP	Posterior	Predictive	Interpretation
BINOMIAL	θ	BETA(a, b)	a+y, b+n-y	BetaBinomial (y)	$\alpha - 1$ successes, $\beta - 1$ failures
Poisson	θ	$\operatorname{Gamma}(a,b)$	a+y, b+n	NegativeBinomial (y)	α total occurences in β intervals
Normal	μ	NORMAL $(\gamma, \frac{\sigma^2}{n_0})$	$rac{n_0\gamma+n\overline{y}}{n_0+n}, \sigma_n^2 = rac{\sigma^2}{n_0+n}$	NORMAL $(\gamma_n, \sigma^2 + \sigma_n^2)$	n_0 observations with sample mean γ
Normal	μ		$\frac{\tau_0\gamma + ny}{\tau_0 + n\tau}, \tau_n = \tau_0 + n\tau$	NORMAL $(\gamma_n, \frac{1}{\tau_n} + \frac{1}{\tau})$	
Normal	$\sigma^2 = \frac{1}{\omega}$	$\omega \sim \text{GAMMA}(\frac{n_0}{2}, \frac{n_0 \sigma_0^2}{2})$	$\frac{n_0+n}{2}, \frac{n_0\sigma_0^2}{2} + \frac{1}{2}\sum(y_i - \mu)^2$		
Multinomial	p_1,\ldots,p_k	DIRICHLET $(\alpha_1, \ldots, \alpha_k)$	$\alpha_1 + n_1, \ldots, \alpha_k + n_k$		$\alpha_i - 1$ occurences of category i

TABLE 1. Conjugate Prior Distributions

TABLE 2. Distributions

Distribution	Density	Mean	Variance
NORMAL (μ, σ^2)	$\frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	μ	σ^2
$POISSON(\lambda)$	$e^{-\lambda \lambda^{\kappa}}$	λ	λ
$\operatorname{Gamma}(a,b)$	$\frac{b^{dk!}}{\Gamma(a)}x^{a-1}e^{-bx}$	$\frac{a}{b}$	$\frac{a}{b^2}$
Beta(a, b)	$\frac{\overline{\Gamma}(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$ $\propto \prod_{i=1}^{K} x_i^{\alpha_i - 1}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
$\text{Dirichlet}(\alpha_1,\ldots,\alpha_K)$	$\propto \prod_{i=1}^{K} x_i^{\alpha_i - 1}$	$\frac{\alpha_i}{\sum_k \alpha_k}$	