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1

Discrete Time Models

1.1 Standing Assumptions

(i) Zero dividends

(ii) Zero tick size

(iii) Zero transaction costs

(iv) Infinitely divisible transactions

(v) No short-selling constraints

(vi) No bid-ask spread

(vii) No market impact (infinitely deep market)

1.2 Setup

Consider a probability space (Ω,F , P).

Definition 1.1. A random variable is a measurable map X : Ω→ R

Definition 1.2. A stochastic process Y = (Yt)t∈I is a collection of

random variables. For us, I = {0, 1, . . . } or [0, ∞).

Definition 1.3. A filtration F = (F )t≥0 is a collection of sub-σ-

algebras on F such that Fs ⊆ Ft for all 0 ≤ s ≤ t (discrete and

continuous time).

Example 1.4. Tossing coins.



6 andrew tulloch

(i) Ω = {HH, HT, TH, TT}

(ii) F is all 16 subsets of Ω

(iii) P(A) = |A|
4

Possible filtration

(i) F0 = {∅, Ω}

(ii) F1 = {∅, Ω, {HH, HT}, {TH, TT}}

(iii) F2 = F

Definition 1.5. A process Y is adapted if and only if Yt is Ft-measurable.

Throughout the course, F0 is assumed trivial.

Definition 1.6. Given a filtration F = (Ft)t≥0 in discrete time, a pro-

cess X = (Xt)t≥1 is predictable if and only if Xt is Ft−1-measurable.

Sometimes we need X0 to be defined, so we just ask that X0 is

F0-measurable.

Definition 1.7. Given P = (Pt)t≥0 prices process in discrete time. An

investment/consumption strategy is a predictable process (H, c)

where Ht takes values in Rn and ct ≥ 0 and satisfies the self-

financing condition

Ht−1 − Pt−1 = Ht · Pt + ct (1.1)

for all t ≥ 1.

Ht models the portfolio during (t − 1, t], and ct models the con-

sumption during (t− 1, t].

Notation. Xt(H) = Ht · Pt is the wealth at time t. Note that given H, we

can find C by solving the self-financing condition.

If ct = 0 a.s. for all t then H is a pure investment strategy.

Example 1.8. Given an initial wealth x > 0, find (H, c) to maximize

T

∑
i=1

E(U(ct))) (1.2)



advanced financial models 7

subject to XT(H) = 0 where T > 0 is not random.

Assume that U is strictly increasing, strongly concave, and bounded from

above.

1.3 A Detour into Martingales

Proposition 1.9. Let X be integrable and G ⊆ F . Then there exists an

integrable, G-measurable random variable X̄ such that

E(XI(G)) = E(X̄I(G))) (1.3)

for all G ∈ G. Moreover, it is unique in the sense that if ¯̄X has the same

property, then X̄ = ¯̄X.

Definition 1.10. Such X̄ is written E(X|G), the conditional expecta-

tion of X given G.

Useful properties of conditional expectation:

(i) If X is G-measurable, then E(X|G) = X.

(ii) If X is independent of G (that is, X and I(G) are independent for

all G ∈ G), then E(X|G) = E(X).

(iii) (Tower property) If H ⊆ G ⊆ F , then

E(E(X|G) |H) = E(E(X|H) |G) = E(X|H) (1.4)

(iv) (Slot property) If Y is G-measurable and XY is integrable, then

E(XY|G) = YE(X|G) (1.5)

Definition 1.11. A martingale (Xt)t≥0 with respect to a filtration F

has the properties

• E(|Xt|) < ∞ for all t,

• E(Xt|Fs) = Xs for all 0 ≤ s ≤ t.

Note that X is automatically adapted.

Exercise 1.12. Suppose X is an integrable discrete-time process such that

E(Xt|Ft−1) = Xt−1 for all t ≥ 1. Show that X is a martingale.
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Example 1.13. Let ξi, i = 1, 2, ... be independent, integrable random

variables with E(ξi) = 0. Let Ft = σ(ξ1, . . . , ξt), Xt = ξ1 + ξ2 + · · ·+ ξt.

Then X is a martingale.

Example 1.14. Let ξ be integrable and let F be a filtration, and Xt =

E(ξ|Ft)

Proof. Integrability comes from integrability of conditional expecta-

tions.

E(Xt|Fs) = E(E(ξ|Ft) |Fs)

= E(ξ|Fs)

= Xs

Example 1.15. Suppose X is a discrete-time martingale and Y is predictable

and bounded. Let Zt = ∑t
s=1 Ys(Xs − Xs−1). Then Z is a martingale.

Proof. Integrability checked by integrability of X and boundedness of

Y.

Zt−1 is Ft−1 measurable since measurability respects algebraic

operations.

E(Zt|Ft−1) = E(Zt−1 + Yt(Xt − Xt−1)|Ft−1)

= Zt−1 + Yt︸︷︷︸
slot property

E

Xt − Xt−1︸ ︷︷ ︸
=0

|Ft−1



Theorem 1.16. Suppose u : [0, ∞) → R is strictly increasing, strictly

concave, differentiable, bounded from above. Suppose there exists investment

strategy H? and consumption c?t = (H?
t−1 − H?

t ) · Pt−1, and a state price

density Y? such that u′(c?t ) = Y?
t−1. Then (H?, c?) is optimal for the

problem max ∑T
t=1 E(u(ct)), subject to X0(H) = x, XT(H) = 0.

Proof. We consider the case where Ω is finite.

Let L(H, c, Y) = E
(

∑T
t=1 (u(ct) + Yt+1(Ht+1P(t + 1)− ct − Ht · Pt−1))

)
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Note that L(H, c, Y) is the objective when (H, c) is feasible. Then

L(H, c, Y) = E

(
T

∑
t=1

(u(ct)− ctYt−1)

)
+ Y0X−Yt−1HtPt−1

+
T−1

∑
t=1

Ht(YtPt −Yt−1Pt−1) (1.6)

First note that u(c?t )− Y?
t−1c?t ≥ u(ct)− Y?

t−1ct since u′(c?t ) = Y?
t−1

(first order condition for the maximum of the concave function c 7→
u(c)− yc).

Second, by definition, YP is a martingale, and by finiteness of Ω,

the predictable process H is bounded. Therefore, Mt = ∑t
s=1 Hs(YsPs−

Ys−1Ps−1) is a martingale and E(Mt) = Ms = 0.

Putting this together, L(H, c, Y?) ≤ L(H?, c?, Y?).

Theorem 1.17. An absolute arbitrage is an investment/consumption strat-

egy (H, c) such that X0(H) = 0, XT(H) = 0, at some non-random time

horizon T > 0, and P
(

∑T
t=1 ct > 0

)
> 0.

Definition 1.18. A numeraire asset is one whose price is strictly

positive almost surely.

Example 1.19. Here is a market without a numeraire. P0 = 1, P0 =

−1, P2 = 1.

Arbitrage:

H1 = −1, c1 = 1X1 = 1, c2 = 1, H2 = 0X2 = 0

Exercise 1.20. Suppose H1 is an arbitrage and the market has a numeraire.

Then there exists a pure investment strategy H′ and a time horizon T′ such

that X0(H′) = 0, XT′(H′) ≥ 0 a.s., and P(XT′(H′) > 0) > 0.

Theorem 1.21. A market model has no arbitrage if and only if there exists a

state price density.

Proof. T = 1 case. Suppose there exists a state price density (Yt)t=0,1

without loss Y0 = 1. Let Y = Y1 for clarity, Y > 0 a.s.

Suppose (Ht)t=1 = H1 = H (non-random vector) is a candidate

arbitrage, so H · P0 ≤ 0 and H · P1 ≥ 0 a.s. We must show H · P0 =

0 = H · P1 a.s.
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Since Y > 0, H · P1 ≥ 0 ⇒ E(YHP1) ≥ 0, but H E(YP1)︸ ︷︷ ︸
state price density

=

HP0 ≤ 0.

By the pigeonhole principle, if Z ≥ 0 a.s and E(Z) = 0, then Z = 0

a.s.

Thus, YH · P1 = 0 a.s., and since Y > 0 a.s., H0P1 = 0 = HP0 = 0

a.s.

Now consider the other direction. Let Y = {Y > 0a.s, E(Y‖P1‖) <
a}. Y is non-empty since Y0 = e−‖P1‖ ∈ Y and Y is convex. Let

C = {E(YP1) , y ∈ Y}. Suppose P0 /∈ C.

By the separating hyperplane theorem, there exists H ∈ Rn such

that

(i) For all c ∈ C, H(c− P0) ≥ 0.

(ii) There exists c? ∈ C, H(c? − P0) > 0.

This implies

(i) For all Y ∈ Y , E(YH · P1) ≥ H · P0

(ii) There exists Y? ∈ Y , E(YH · P1) > H · P0.

Let y = {Y > 0 : E(Y‖P1‖)∞}. Let P = {E(YP1) : Y ∈ Y} ⊆ Rn.

Suppose P0 /∈ P .

By the separating/supporting hyperplane theorem there exists a

vector H ∈ Rn such that

(i) For all p ∈ P , H · (p− P0) ≥ 0,

(ii) There exists p? ∈ P such that H · (p? − P0) > 0.

If p ∈ P then p = E(YP1) for some Y. Then

H · p = E

Y H · P1︸ ︷︷ ︸
X, time 1 wealth

 , H · P0 = −c︸︷︷︸
consumption in (0, 1]

(1.7)

Restating, we then have:

(i) For all Y ∈ Y , E(YH · P1) ≥ H · P0

(ii) There exists Y? ∈ Y , E(YH · P1) > H · P0.
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We need to show that X ≥ 0 a.s., c ≥ 0, P(X + c > 0) > 0. Let

Y0 = e−‖P0‖ ∈ Y . For ε > 0, let Y = εY0 in (i), then εE(Y0X) ≥ c ⇒
c ≥ 0 by taking ε→ 0.

Let Y = ( 1
ε I(X < 0) + 1)Y0 in (i), which implies

E(Y0XI(X < 0)) ≥ −ε(E(X0Y) + c)→ 0 (1.8)

as ε→ 0.

Then Y0 > 0, XI(X < 0) ≤ 0 by pigeonhole principle,

P(X < 0) = 0⇒ X ≥ 0 (1.9)

a.s.

By (ii), P(X = 0, c = 0) < 1.

Definition 1.22. An integrable adapted process X is a supermartin-

gale is a supermartingale if

E(Xt|Fs) ≤ Xs (1.10)

for all 0 ≤ s ≤ t.

Proposition 1.23. If X is a supermartingale and E(XT) = X0 for some

non-random T > 0, then (Xt)0≤t≤T is a martingale.

Proof. Let Ys,t = Xs −E(Xt|Fs) ≥ 0 by assumption. Then

E(Ys,t) = E(Xs −E(E(XT |Fs)))

= E(Xs)−E(XT)

≤ X0︸︷︷︸
supermartingale

− X0︸︷︷︸
by assumption

By pigeonhole, Ys,T = 0 a.s. Then Xs = E(XT |Fs) for all 0 ≤ s ≤ T.

So by the tower property, (Xs)0≤s≤T is a martingale.

Proof (Easy direction of 1FTAP). Let T > 1, and finite sample space.

Let H be a strategy, and X = X(H) be a corresponding wealth pro-

cess. Let Y be a state price density. Then XY is a supermartingale,

as1 1 This relies on the finiteness of Ω since
this guarantees that H is bounded, and
so we call use the slot property
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E(XtYt|Ft−1) = E(Ht · PtYt|Ft−1)

= Ht︸︷︷︸
slot property

·E(PtYt|Ft−1)

= Ht · Pt−1Yt−1

= (Ht−1Pt−1 − ct)Yt−1

≤ Xt−1Yt−1.

Suppose H is such that X0 = 0 and XT = 0 a.s. for some non-

random T > 0. Then

E(YTXT) = 0 = Y0X0 (1.11)

and so XY is a martingale by the previous proposition. This implies

YtXt = E(YtXt|Ft) = 0, which implies Xt = 0 for all t.

By the calculation,

E(XtYt|Ft−1) = (Xt−1 + ct)Yt−1

⇒ ct = 0

for all t.

Definition 1.24. A stopping time for a filtration (Ft)t∈T is a random

variable τ : Ω → T ∪ {∞} such that {τ ≤ t} ∈ Ft for all t ∈ T

(discrete or continuous time).

Notation. Mt∧τ = Mτ
t is the martingale M stopped at τ.

Proposition 1.25. Let M be a martingale and τ a stopping time, and let

Nt = Mt∧τ . Then N is also a martingale.

Proof.

Nt = M0 +
t

∑
s=1

I(s ≤ τ) (Ms −Ms−1) (1.12)

and I(τ ≤ s− 1) is Fs−1-measurable and bounded.

Definition 1.26. A local martingale is an adapted process X such that

there exists an increasing sequence of stopping times τn ↑ ∞ such
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that Xτn is a martingale for all n.

Remark 1.27. Martingales are local martingales.

Proposition 1.28. Let X be a local martingale (discrete time). Let K be

predictable and let Yt = ∑t
s=1 Ks(Xs − Xs−1). Then Y is a local martingale.

Proof. Since X is a local martingale, there exists a sequence σn → ∞

stopping times such that Xσn is a martingale. Let

τn = inf{t ≥ 0 : |Kt+1| > N} (1.13)

Then we have

Xt∧( σn ∧ τn︸ ︷︷ ︸
stopping time

) =
t

∑
s=1

KsI(s ≤ τn)︸ ︷︷ ︸
bounded and predictable

( Xτn
s − Xτn

s−1︸ ︷︷ ︸
martingale difference

) (1.14)

Example 1.29. Let ν, ξ be random variables with ξ integrable and E(ξ) =

0. Let F1 = σ(ν),F2 = σ(ν, ξ). Let X1 = 0, X2 = νξ. Then X is a local

martingale.

If the product νξ is also integrable, then X is a true martingale, otherwise

E(X2|F1) is not defined.

Proposition 1.30. Let X be a local martingale such that there exists an

integrable process Y such that Yt ≥ |Xs| for all 0 ≤ s ≤ t. Then X is a true

martingale.

Proof. By assumptions there exists a sequence τN → ∞ such that XτN

is a martingale. Also, |Xt∧τN ≤ Yt which is integrable. Then

E(Xt|Fs) = E

(
lim

N→∞
Xt∧τN |Fs

)
(1.15)

= lim
N→∞

E(Xt∧τN |Fs) (1.16)

= lim
N→∞

Xs∧τN (1.17)

= Xs (1.18)

Corollary 1.31. In discrete time, if X is a local martingale and E(|Xt|) <
∞ for all t ≥ 0 then X is a martingale.
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Proof. Let Yt = ∑t
s=0 |Xs|, and Y is integrable by assumption.

Proposition 1.32. If X is a local martingale (in discrete or continuous

time) and Xt ≥ 0 almost surely for all t, then X is a supermartingale.

Proof. First, Xt is integrable, since

E(|Xt|) = E(Xt) (1.19)

= E

(
lim

N→∞
Xt∧τN

)
(1.20)

≤ lim inf
N→∞

E(Xt∧τN ) (1.21)

= lim inf
N→∞

X0∧τn (1.22)

= X0 < ∞. (1.23)

Now,

E(Xt|Fs) = E(lim Xt∧τN |Fs) (1.24)

≤ lim inf E(Xt∧τN |Fs) (1.25)

= lim inf Xs∧τN (1.26)

= Xs (1.27)

Corollary 1.33. In discrete time, non-negative local martingales in dis-

crete time are martingales.

Proof. Let X be the local martingale. Then E(|Xt|) < ∞ for all t ≥ 0

by Fatau. The result follows from the last corollary.

Theorem 1.34. Let X be a discrete time local martingale. Fix T > 0

non-random. Then (Xt)0≤t≤T is a true martingale if either

(i) E(|XT |) < ∞, or

(ii) XT ≥ 0

Lecture on Wednesday 23

October

Lecture on Wednesday 23

October

1.4 Contingent Claims

Setup - P is a price process (n-dimensional space, adapted).
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Two types of claims

(i) European - specified by a time horizon T (maturity date or ex-

piry) and a FT-measurable random variable ξT (the payout of the

claim).

(ii) American - specified maturity date T and an adapted process

(ξt)0≤t≤T where ξt is the payout if owner of claim chooses to exer-

cise at time t ≤ T.

Example 1.35. A call option is the right, but not the obligation, to buy a

certain stock at a fixed price sometime in the future.

ξT = (ST − k)+ (1.28)

ξt = (St − k)+ (1.29)

for all 0 ≤ t ≤ T.

Definition 1.36. A European contingent claim is attainable or

replicable if there exists a pure investment strategy H such that

XT(H) = ξT almost surely.

Theorem 1.37. Suppose ξt is the price of attainable claim for 0 ≤ t ≤ T. If

the augmented market (P, ξ) has no arbitrage then ξt = Xt(H) a.s.

Proof. Let τ = inf{t ≥ 0 : Xt 6= ξt}. Let H̄t = sign(ξt, Xt)I(t ≥ τ) (Ht,−1).

Then cτ+1 = |ξτ − Xτ |, X̄t(H̄) = H̄t · (Pt, ξt), X̄0(H̄) = 0, X̄T(H̄) =

0, and ct = 0 for all t if and only if there is no arbitrage.

Theorem 1.38. Suppose Y is a state price density of the original market

with prices P. Suppose ξT is the payout of an attainable claim, suppose

either

(i) E(|ξT |YT) < ∞, or

(ii) ξT ≥ 0 a.s.

If the augmented market (P, ξ) has no arbitrage, then

ξt =
1
Yt

E(YTξT |Ft) (1.30)

for all 0 ≤ t ≤ T.
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Proof. By the previous result, there exists H (pure investment strat-

egy) such that Xt(H) = ξt for all t. But XY is a local martingale.

From before, if either XTYT is integrable or non-negative, the process

XY is a true martingale.

ξtYt = XtYt = E(XTYT |Ft) = E(ξTYT |Ft) (1.31)

as required.

Remark 1.39. When our price process can be decomposed into a numeraire,

so P = (N, S), we can let Q be an equivalent martingale measure. If either

EQ

(
ξT
NT

)
< ∞, or ξT ≥ 0, then

ξt = NtEQ

(
ξT
NT
|Ft

)
(1.32)

Theorem 1.40. Suppose ξt is the price of a contingent claim at time t (not

necessarily attainable). Suppose that the augmented market (P, ξ) has no

arbitrage. Then there exists a positive process Y such that

Pt =
1
Yt

E(YT PT |Ft) (1.33)

ξt =
1
Yt

E(YTξT |Ft) (1.34)

Here, (1.33) shows Y is a state price density for the original market, and

(1.34) shows Y is a state price density for the augmented market.

Proof. The proof is just 1ftap applied to the augmented market.

Example 1.41. Let Pt = (Bt,T , St). Bt,T is price of bond maturing at T,

with BT,T = 1 almost surely. St is a stock with St ≥ 0 for all t. Let ct be the

price of a call with payout (ST − K)+. Suppose (Bt,T , St, Ct)t∈[0,T] has no

arbitrage.

In general, since the payout of the call is non-negative then ct ≥ 0. Also,

(ST − K)+ ≥ ST − K = ST − KBT,T = (−K, 1) · (Bt,T , St).

This implies

ct ≥ St − KBt,T (1.35)

Then ct ≥ (St − KBt,T)
+, and (ST − K)+ < ST , thus ct ≤ St.
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If there exists a state price density Y for (B, S) such that

ct =
1
Yt

E
(
YT(ST − K)+|Ft

)
. (1.36)

Example 1.42. A put option is equivalent to (K − ST)
+ = K − ST +

(ST − K)+ = (K,−1, 1) · (BT,T , ST , CT). If pt is a no-arbitrage price of the

put, then

pt = KBt,T − St + ct. (1.37)

Definition 1.43. A market is complete if and only if every Euro-

pean contingent claim is attainable. A market that is not complete is

incomplete.

Theorem 1.44 (Second fundamental theorem of asset pricing). A

market with no arbitrage is complete if and only if there exists a unique (up

to scaling) state price density.

Proof. Suppose the market is complete. Let Y, Y′ be state price densi-

ties with Y0 = Y′0 = 1. Fix T > 0 and let ξT ≥ 0 be FT-measurable.

By completeness, there exists a pure investment strategy H such that

XT(H) = ξT .

From before,

E(YTξT) = X0(H) = E
(
Y′TξT

)
(1.38)

and thus E(ξT(YT −Y′T)) = 0. Let ξT = I(YT > Y′T). Then YT ≤ Y′T
almost surely, and so by symmetry, YT = Y′T .

A claim with payout ξT ≥ 0 is attainable if there exists x ≥ 0 such

that E
(

YTξT
Y0

)
= x = X0(H) for all state price densities.2 2 Proof in example sheet

Given there exists a unique state price density, every non-negative

claim is attainable. The conclusion follows by observing ξT = ξ+T −
ξ−T .

Theorem 1.45. Suppose that the price process P is n-dimensional and the

market is complete. The for each t ≥ 0, there are no more than nt disjoint

sets of positive probability Ft-measurable sets of positive probability. In

particular, the random vector Pt takes on at most ntvalues.

Proof. Consider the t = 1 case. Let A1, . . . , Ak be disjoint F1-

measurable sets with P(Ai) > 0. We claim the set {I(Ai)} is linearly
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independent.

Suppose ∑i aiI(Ai) = 0. Multiplying by I
(

Aj
)

implies ajI
(

Aj
)
= 0

almost surely by disjointness. Since P
(

Aj
)
> 0 by assumption we

have aj = 0.

By completeness, each I(Ai) is attainable, so

span{I(Ai)} ⊆ {H · P1, H ∈ Rn} = span{P1
1 , . . . , Pn

1 } (1.39)

1.5 American Claims

Recall that the payoff of an American claim is specified by an adapted

process (ξt)0≤t≤T where ξt is the payout if the claim is executed at

time t.

Theorem 1.46. Suppose the market is complete. Then there exists a (pure

investment) strategy such that Xt(H) ≥ ξt for all 0 ≤ t ≤ T, and there

exists a stopping time τ? such that Xτ?(H) = ξτ? .

Furthermore, X0(H) = supstopping time τ ≤ T E(Yτξτ) where Y is the

unique state price density such that Y0 = 1.

Definition 1.47. Let Z be an adapted integrable process (Zt)0≤t≤T .

The Snell envelope of Zis the process U defined by UT = ZT , Ut =

max{Zt, E(Ut+1|Ft)} for 0 ≤ t ≤ T − 1.

Remark 1.48. Note that Ut ≥ Ztfor all t, and U is a supermartingale since

Ut ≥ E(Ut+1|Ft).

Theorem 1.49 (Doob decomposition). Let U be a discrete-time su-

permartingale. Then there exists a martingale M with M0 = 0, and a

non-decreasing process A with A0 = 0 such that Ut = U0 + Mt − At.

Proof. Let M0 = A0 = 0, Mt+1 = Mt + Ut+1 − E(Ut+1|Ft), and

At+1 = At + Ut −E(Ut+1|Ft). By induction, At is predictable. A is

non-decreasing as U is a supermartingale.

Now, we show uniqueness. Suppose U = U0 + M − A = U0 +

M′ − A′ . Then M−M′ = A− A′, and as A− A′ is predictable, we

have M−M′ is a predictable martingale. In discrete time, predictable
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martingales are almost surely constant. Thus, Mt −M′t = M0 −M′0 =

0, and thus we have demonstrated uniqueness.

Theorem 1.50. Let Z be integrable and adapted, U is a Snell envelope, with

Doob decomposition U = U0 + M− A. Let τ? = inf{t ≥ 0|At+1 > 0}
with the convention τ? = T on {At = 0∀t}.

Then Uτ? = U0 + Mτ? = Zτ? .

Remark 1.51. τ? is a stopping time since A is predictable.

Proof. Note that Aτ? = 0 but Aτ?+1 > 0 . We have

Ut = U0 + Mt − At (1.40)

= max{Zt, E(Ut+1|Ft)} (1.41)

= max{Zt, U0 + Mt − At+1}. (1.42)

So U0 + Mτ? = max{Zτ? , U0 + Mτ? − Aτ?−1}, which implies

U0 + Mτ? = Zτ? = Uτ? as required.

Theorem 1.52. Under the same hypothesis as before,

U0 = sup
stopping times τ ≤ T

E(Zτ) . (1.43)

Proof. By the optional stopping theorem, U0 ≥ E(Uτ) ≤ E(Zt) for

any stopping time τ ≤ T, and since Ut ≥ Zt∀t.

But U0 = E(U0 + Mτ?) = E(Zτ?).

We now give a proof of the existence of the minimal super-replicating

strategy. Let U be the Snell envelope of (Ytξt)0≤t≤T . Let U = U0 +

M− A be its Doob decomposition.

By completeness, there exists a strategy H such that

XT(H) =
U0 + MT

YT
. (1.44)

Since XY is a martingale (XY is a local martingale in general but by
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completeness all processes are bounded). So

XtYT = U0 + Mt (1.45)

≥ U0 + Mt − At (1.46)

= Ut (1.47)

≥ Ytξt. (1.48)

Thus Xt ≥ ξt for all 0 ≤ t ≤ T.

Also, at τ? = inf{t ≥ 0|At+1 > 0}, we have

Xτ?Yτ? = U0 + Mτ? = Uτ? = Yτ?ξτ? , (1.49)

and so Xτ? = ξτ? .

Note also that X0 = E(U0 + MT) = U0 = supτ≤T E(ξτYτ).



2

Continuous Time Models

In discrete time, we had Xt − Xt−1 = Ht · (Pt − Pt−1) − ct. For

continuous time, we replace this with dXt = HtdPt − ctdt

A state price density is some stochastic process Y with Yt > 0 and

YP is a martingale

Lemma 2.1. If t 7→ Xt(ω) is differentiable and X is a martingale then X is

constant.

This can make a pricing theory quite boring!

2.1 Diversion into Stochastic Calculus

Definition 2.2. A (standard scalar) Brownian motion is a process

W = (Wt)t≥0 such that

(i) W0(ω) = 0 for all ω.

(ii) t 7→Wt(w) is continuous for all ω

(iii) For any 0 ≤ t0 < t1 < · · · < tn, the increments Wt1 −Wt0 , . . . , Wtn −
Wtn−1 are independent, with Wt −Ws ∼ N(0, |t− s|).

Theorem 2.3. The Brownian motion exists (Weiner, 1923).

Consider a filtration (Ft) with the property that Wt −Ws is in-

dependent of Fs, 0 ≤ s ≤ t. Our technical assumptions are usual

conditions - Ft = ∩ε>0Ft+ε (right-continuity), F0 contains all P-null

sets.
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Definition 2.4. A simple predictable process is of the form

αt(ω) =
n

∑
i=1

I((ti−1, ti)) ai(ω), (2.1)

where 0 ≤ t0 < · · · < tn, each ai is a bounded Fti−1 -measurable

random variable.

Remark 2.5. α is left-continuous, piecewise-constant, and adapted.

Definition 2.6. ∫ ∞

0
αsdWs =

n

∑
i=1

ai(Wti −Wti−1) (2.2)

where α is a simple predictable process.

Definition 2.7. The predictable σ-algebra on [0, ∞)×Ω is generated

by (s, t]× A where A ∈ Fs.

This is the smallest σ-algebra for which simple predictable pro-

cesses are measurable.

A process measurable with respect to the predictable σ-algebra is

called predictable.

Remark 2.8. If α is left-continuous and adapted, it is predictable.

Proposition 2.9 (Itô’s isometry). If α is simple and predictable, then

E

((∫ ∞

0
αsdWs

)2
)

= E

(∫ ∞

0
α2

s ds
)

(2.3)

Thus, the isometry I from simple predictable process to square integrable

random variables on L2(Ω,F , P) (which is complete) defined by

I(α) =
∫ ∞

0
αsdWs (2.4)

Proof.

(∫
αdW

)2
=
(
∑ ai∆Wi

)2 (2.5)

= 2 ∑
j<i

ajai∆Wj∆Wi + ∑ a2
i (∆Wi)

2 (2.6)

Note that E
(

∑ a2(∆Wi)
2

i

)
= ...

Finish this proofFinish this proof
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Definition 2.10. Suppose E
(∫ ∞

0 (αk
s − αs)2ds

)
→ 0, where each αk is

simple and predictable. Then

∫ ∞

0
αsdWs = lim

L2

∫ ∞

0
ak

s dWs (2.7)

Theorem 2.11. If α is predictable and E
(∫ t

0 α2
s ds
)

< ∞ for all t, there

exists a continuous martingale X such that Xt =
∫ ∞

0 αsI(s ≤ t) dWs.

For notation, we represent Xt as
∫ t

0 αsdWs. Note that E(Xt) = 0

and E
(
X2

t
)
=
∫ t

0 α2
s ds.

Definition 2.12 (Localization). Suppose α is predictable and
∫ t

0 α2
s ds <

∞ almost surely for all t. Let τn = inf{t ≥ 0|
∫ t

0 αsds > n}.
Let α

(n)
t = αtI(t ≤ τn), so

∫ t
0 α

(n)
s dWs is well-defined by the L2

theory, since E
(∫ t

0 (α
(n)
s )2ds

)
≤ N ≤ ∞ as

∫ t
0 α2

s ds < ∞ almost surely

as τn ↑ ∞.

Notation.
∫ t

0 αsdWs as
∫ t

0 α
(N)
s dWs on {t ≤ τn}.

Theorem 2.13. If α is adapted and continuous, then
∫ t

0 αsdWs is defined for

all t ≥ 0 - since t 7→ αt(ω) is continuous, α is bounded on [0, t] for each ω,

and so
∫ t

0 αsds < ∞ almost surely.

If Xt =
∫ t

0 αsdWs, then X is a continuous local martingale, since X(n) =

(Xt∧τn)t ≥ 0 is a true martingale, where τn = inf{τ ≥ 0,
∫ t

0 αsds ≥ N}.

2.2 Itô’s Formula

Definition 2.14. An Itô process X is of the form

Xt = X0 +
∫ t

0
αsdWs +

∫ t

0
βsds (2.8)

such that α, β are predictable and
∫ t

0 αsds < ∞ and
∫ t

0 |βs|ds < ∞ for

all t.

Theorem 2.15. If X is an Itô process and f ∈ C2, then f (X) is an Itô

process. In fact,

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)αsdWs +

∫ t

0

 f ′(Xs)βs +
1
2

f ′′(Xs)α
2
s︸ ︷︷ ︸

Itô’s correction

 ds

(2.9)
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Example 2.16. f (x) = x2. Then

W2
t =

∫ t

0
2WsdWs + t (2.10)

E
(

W2
t

)
= E

(∫ t

0
2WsdWs

)
+ t (2.11)

and the first term is zero as it is a martingale.

This follows from

E

(∫ t

0
W2

s ds
)
=
∫ t

0
sds =

t2

2
< ∞ (2.12)

so
∫ t

0 WsdWs is a martingale.

Theorem 2.17. Let X be an Itô process. Fix t > 0. Then

lim
n→∞

n

∑
k=1

(
X tk

n
− X t(k−1)

n

)2
=
∫ t

0
α2

s ds (2.13)

Notation.

〈X〉t =
∫ t

0
αsds (2.14)

is called the quadratic variation of X.

Theorem 2.18 (Itô’s formula). In integral form,

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d〈X〉s (2.15)

In differential form,

d f (Xt) = f ′(Xt)dXt +
1
2

f ′′(Xt)d〈X〉t (2.16)

Morally, the idea is to take Taylor expansion around f (Xt).

Theorem 2.19 (Itô’s formula, multidimensional version). let X, Y be

Itô processes. Then the quadratic covariation

〈X, Y〉t = lim
n→∞

n

∑
k=1

(X tk
n
− X t(k−1)

n
)(Ytk

n
−Yt(k−1)

n
) (2.17)

=
1
2
〈X + Y〉t − 〈X〉t − 〈Y〉t (2.18)

Proposition 2.20. The quadratic covariance satisfies the following proper-

ties:
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(i) (Bilinear, symmetric)

〈aX + bY, Z〉 = a〈X, Z〉+ b〈Y, Z〉 = 〈Z, aX + bY〉 (2.19)

(ii) If Xt = X0 +
∫ t

0 βsds then 〈X, Y〉t = 0 for any Itô process Y.

(iii) Let W1, W2 be two independent Brownian motions. Then
〈
W1, W2〉

t =

0.

(iv) 〈∫ t

0
αsdWs,

∫ t

0
βsdWs

〉
=
∫ t

0
αsβsds (2.20)

Let X be an n-dimensional Itô process, and f ∈ C2(Rn → R). Then

(2.21)

Fill in this multivariate Itô’s

result

Fill in this multivariate Itô’s

resultIn finance there are state price densities⇒ equivalent martingale

measures. How to do computations under equivalent changes of

measure?

Let W be an n-dimensional BM with W = (W1, . . . , Wm) where

Wi are independent standard Brownian motions. Let α be an n-

dimensional predictable process and
∫ t

0 ‖as‖2ds < ∞, and let

Zt = e
∫ t

0 αsdWs− 1
2
∫ t

0 ‖αs‖2ds. (2.22)

Proposition 2.21. Z satisfies the following properties:

(i) Z is a local martingale.

(ii) Z is a supermartingale.

(iii) If E(ZT) = 1 for some T > 0 (non-random), then (Zt)0≤t≤T is a true

martingale.

Proof. Let dXt = αt · dWt − 1
2‖αt‖2dt, X0 = 0. Let f (x) = ex. Then

dZt = d f (Xt) = f ′(Xt)dXt +
1
2

f ′′(Xt)d〈X〉t (2.23)
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Note that

d〈X〉t = d

〈
m

∑
i=1

∫ t

0
α2

s dW2
s

〉
t

(2.24)

= d ∑
i,j

〈∫
αi

sdWi
s,
∫

α
j
sdW j

〉
t

(2.25)

= ∑(αi
t)

2dt (2.26)

= ‖αt‖2dt (2.27)

Then

dZt = Zt

(
αt · dWt −

1
2
‖αt‖2dt

)
+

1
2

Zt‖αt‖2dt = ZtαtdWt. (2.28)

Thus

Zt = 1 +
∫ t

0
Zsαs · dWs (2.29)

and so Z is a stochastic integral, and hence a local martingale.

Zt > 0 almost surely, so non-negative local martingales are super-

martingales by Fatou’s lemma.

Z is a supermartingale and E(ZT) = Z0, and so (Zt)0≤t≤T is a

martingale (pigeonhole principle).

Theorem 2.22 (Cameron-Martin-Girsanov theorem). Let Zbe as before

and assume E(ZT) = 1for some T > 0. Define an equivalent martingale

measure Q by Radon-Nikodym density

dQ

dP
= Zt (2.30)

Let Ŵt = Wt −
∫ t

0 αsds. Then Ŵ is a Q-Brownian motion.

Theorem 2.23 (Martingale representation theorem). Let W be an m-

dimensional Brownian motion generating the filtration (Ft)t≥0. Let X

be a continuous local martingale. Then there exists a predictable α with∫ t
0 ‖αs‖2ds < ∞ almost surely for all t such that Xt = X0 +

∫ t
0 αsdWs.

If Xt > 0 a.s. for all t, then there exists a predictable process β with∫ t
0 ‖βs‖2ds < ∞ for all t such that

Xt = X0e
∫ t

0 βsdWs− 1
2
∫ t

0 ‖βs‖2ds (2.31)

Theorem 2.24 (Levy’s characterization theorem). Let X be a continuous
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local martingale (in any filtration satisfying the usual conditions) such that

its quadratic variation 〈X〉t = t. Then X is a Brownian motion.

2.3 Arbitrage Theory in Continuous Time

Recall that in discrete time,

Xt = Ht · Pt = Ht+1 · Pt − ct+1 (2.32)

Xt+1 = Ht+1 · Pt+1 ⇒ Xt+1 − Xt = Ht+1 · (Pt+1 − Pt)− ct+1 (2.33)

The setup is as follows:

(i) P is an m-dimensional Itô process.

Definition 2.25. A self-financing investment/consumption strategy

(H, c) is a pair of predictable processes such that ct ≥ 0 for all t ,∫ t
0 ∑(Hi

s)
2d
〈

Pi〉 >s< ∞ for all t, and

Ht · Pt = H0 · P0 +
∫ t

0
Hs · dPs −

∫ t

0
csds (2.34)

Definition 2.26 (Incomplete). An arbitrage is an investment/con-

sumption strategy (H, c) such that X0 = XT = 0 and P
(∫ T

0 csds > 0
)
>

0 for some non-random T > 0

This definition is flawed.

Example 2.27 (Doubling strategies). Consider the discrete-time model

P = (1, St) where St = ξ1 + · · ·+ ξt where ξi are IID with P(ξi = ±1) =
1
2 .

Consider a price vector P = (1, W) with W a Brownian motion .

Let Xt =
∫ t

0 πsdWs, and let f : [0, 1] → [0, ∞] an increasing bijection

with inverse f−1. For example, f (t) = t
1−t with f−1(u) = u

1+u .

Consider

Zu =
∫ f−1(u)

0

√
f ′(s)dWs (2.35)

Then

〈Z〉u =
∫ f−1(u)

0
f ′(s)ds = u (2.36)
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which implies Z is a Brownian motion by Levy’s characterization.

Let τ =∈ {u ≥ 0 : Zu > K} where K > 0 is a constant. Let

πt =
√

f ′(t)I
(
t ≤ f−1(τ)

)
. Note that

∫ 1
0 π2

s ds =
∫ f−1(τ)

0 f ′(s)ds =

τ < ∞. So
∫ t

0 πsdWs makes sense for all t ≤ 1. Let Xt = πsdWs, with

X1 =
∫ f−1(τ)

0

√
f ′(s)dWs = Zτ = K > 0. X is a local martingale since

it is a stochastic integral, but E(X1)− K 6= X0 = 0.

Definition 2.28. An investment/consumption strategy (H, c) is L-

admissible if Xt(H, c) ≥ −Lt for all t a.s. where L is given non-

negative adapted process.

For most cases, L = 0.

Definition 2.29. A state price density is a positive Itô process such

that (YtPt)t≥0 is a local martingale.

Theorem 2.30. If there exists a state price density such that YL is uni-

formly integrable, then there is no arbitrage among L-admissible self-

financing investment/consumption strategies.

Remark 2.31. Recall that (Zt)t≥0 is uniformly integrable if and only if

lim
k→∞

sup
t≥0

E(|Zt|I(Zt≥k)) = 0 (2.37)

Remark 2.32. If (Zt)0≤t≤T is a martingale then (Zt)0≤t≤T is uniformly

integrable (T < ∞ not random.)

Remark 2.33. If supt≥0 E(|Zt|p) < ∞ for some p > 1 then (Zt)t≥0 is

uniformly integrable.

Remark 2.34. If Zn → Z∞ a.s. and (Zn)n≥1 is UI then E(|Zn − Z∞|) →
0.

Proposition 2.35. Let (H, c) be a self financing stragey and Xt = Ht · Pt

so that dXt = Ht · dPt − ctdt. Let Y be an Itô process. Let Y be an Itô

process. Then

d(XtYt) = Ht · (dYtPt)−Ytctdt. (2.38)

Proof. Since dX = H · dP− cdt, then

d〈X, Y〉 =
n

∑
i=1

hid
〈

Pi, Yi
〉

(2.39)
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By Itô’s formula,

d(XY) = XdY + YdX + d < X, Y > (2.40)

= H · PdY + Y(H · dP− cdt) + ∑ Hid
〈

Pi, Yi
〉

(2.41)

= ∑ Hi(PidY + YdPi + d
〈

Pi, Y
〉
)−Ycdt (2.42)

= ∑ Hid(PiY)−Ycdt (2.43)

Definition 2.36. A continuous, adapted process (Zt)t≥0 is of class D
(Doob) if {Zτ |τ stopping times} is uniformly integrable.

Remark 2.37. If E
(

supt≥0 |Zt|
)
< ∞, then (Zt)t≥0 is of class D.

Theorem 2.38. If YL is of class D (at least locally), then there is no arbi-

trage.

Theorem 2.39. If there exists a state price density Y such that YL is of

class D locally, then there are no L-admissible .

Class D locally means {Zτ∧t - τ a stopping time is UI∀t ≥ 0}.

Proof.

∫ t

0
Hs · d(XsPs) = YtXt −Y0X0 +

∫ t

0
Yscsds (2.44)

≥ −YtLt −Y0X0 (2.45)

if (H, c) is L-admissible. and from the lemma.

Also, since YP is a local martingale then
∫

H · d(YP) is a local

martingale (by construction of the Itô integral), so there exists a se-

quence of stopping times τn ↑ ∞ such that (
∫

H · d(YP))τn is a true

martingale.
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Then

E

(∫ T

0
Hs · d(YsPs) + YT LT

)
= E

(
lim

n→∞

∫ T∧τn

0
Hs · d(YsPs) + LT∧τnYT∧τn

)
(2.46)

≤ lim inf
n→∞

E

(∫ T∧τn

0
Hd(YP) + LT∧τn YT∧τn

)
(2.47)

= lim inf
n→∞

E(YT∧τn LT∧τn) (2.48)

= E(YT LT) (2.49)

by Fatau’s lemma (2.47), using that (
∫ t

0 H · d(YP))τn is a martingale

starting at zero (2.48) and the assumption of uniform integrability

(2.49).

So suppose X0 = 0 = XT almost surely. Then

E

(∫ T

0
Yscsds

)
= E

(∫ T

0
Hs · d(YsPs)

)
≤ 0⇒ ct(ω) = 0a.e. (2.50)

which implies no arbitrage.

Suppose P = (N, S) where Nt > 0 for all t ≥ 0 almost surely - e.g.

the price of a numeraire.

Definition 2.40. A pure investment strategy H is an arbitrage relative

to the numeraire if and only if

(i) There exists a non-random T > 0 such that

XT
N0
≥ NT

N0
a.s. (2.51)

and

P

(
XT
N0

>
NT
N0

)
> 0 (2.52)

Remark 2.41. There exists a model P, credit limit L such that there is no

absolute arbitrage but there is a relative arbitrage. To showTo show

Definition 2.42. An equivalent (local) martingale measure is a mea-

sure Q ∼ P such that S
N is a Q-local martingale.

Theorem 2.43 (FTAP1 for market with a numeraire). Suppose Q is

an EMM and L
N is locally class D (with respect to Q), then there are no

L-admissible relative arbitrages.
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Lemma 2.44. If Xt = φtNt + πt · St (i.e (ψ, π) is a self-financing pure

investment strategy), then

d
Xt

Nt
= πtd

St

Nt
. (2.53)

Proof. Ito’s lemma

Proof (Proof of theorem). If Q is an EMM, X is a Q-local martingale,

since it is the stochastic integral with respect to the Q-local mar-

tingale S
N . As Xt+Lt

Nt
≥ 0, we can apply Fatau’s lemma as before,

obtaining

EQ

(
XT
NT

)
≤ X0

N0
. (2.54)

Thus, if

XT
NT
≥ X0

N0
(2.55)

P a.s. then

XT
NT
≥ X0

N0
(2.56)

Q a.s by equivalence of P and Q.

Then XT
NT

= X0
N0

Q a.s. by the pigeon hole, then XT
NT

= X0
N0

P a.s, since

P ∼ Q.

Fill in rest of lecture contentFill in rest of lecture content

In the framework P = (B, S), dBt = Btrtdt, dSi
t = Si(µ

i
tdt +

∑m
j=1 σ

ij
t dW j

t ).

Theorem 2.45. Let λt be predictable and
∫ t

0 ‖λs‖2ds < 0 a.s. ∀t ≥ 0 and

satisfying σtλt = µt = rt. Then dYt = −Yt(rtdt + λtdWt) is a state price

density and if W generates the filtration then all state price densities are of

this form. λ is called a market price of risk.

Proof. From Itô’s formula,

d(YtBt) = −YtBtλt · dWt (2.57)

is a local martingale,
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d(YtSi
t) = YtSi

t(µ
i
t + ∑ σijdW j) + YSi(−rdt−∑ λjdW j)−YSi ∑ σijλjdt

(2.58)

d(YSi) = YSi((σij − λ)dW + (µi − r− (σλ)idt)) (2.59)

Now, if the filtration is generated by W, then all positive local

martingales M are of the form (by the martingale representation

theorem) dM = −Mλ · dW for some predictable process λ. So if Y is

a state price density then Y is of the form Y = M
S so dY = −Y(rdt =

λdW). If YSi is a local martingale for all i then σλ = u− r1 in order

for the dt to cancel in Itô’s formula.

If Y is a state price density such that YB is a true martingale, we

can define an equivalent measure Q by dQ
dP

= YT BT
Y0B0

for some fixed

T > 0. This Q is an equivalent martingale measure.

Theorem 2.46. Suppose dMt = −Mtλt · dWt is a true martingale where λ

solves σλ = µ− r1. Fix T > 0 and let dQ
dP

= MT
M0

. Then Q is an EMM and

dSi
t = Si

t(rtdt + σijdŴt) for a Q-Brownian motion Ŵ.

Proof. By Girsanov’s theorem, Ŵt = Wt +
∫ t

0 λsds is a Q-Brownian

motion. Now, by Itô,

d(
Si
B
) =

Si
B
((µi − r)dt + σijdW) (2.60)

=
Si

B
σij(λtdt + dWt) (2.61)

=
Si

B
σijdŴ. (2.62)

Theorem 2.47. Suppose that the filtration is generated by W. Suppose

n = d and that the d× d matrix σij(ω) is invertible for all t, ω. Let λt =

σ
ij
t (µt − rt1) and dYt = −Yt(rtdt + λtdWt) is the unique state price

density. Let ξT be a Ft-measurable non-negative random variable such that

ξTYT is integrable. Then there exists a 0-admissible trading strategy H such

that XH
T = ξT and XH

0 = E(YTξT)
Y0

.

Furthermore, if LY is locally of class D and H̃ is an L-admissible strategy

such that XT(H̃) = ξT , then X0(H̃) ≥ X0(H). That is, E(YTξT)
ξ0

is the
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minimal replication cost of the European claim with payout ξT .

Proof. Let Mt = E(YTξT |Ft). This is a martingale. We show that there

exists H such that XH
t = Mt

Yt
for all 0 ≤ t ≤ T. By the martingale

representation theorem, there exists a d-dimensional predictable

process α such that

dMt = αtdWt (2.63)

By Itô’s formula,

d
Mt

Yt
=

Mt

Yt
rtdt + (

Mtλt + σt

Yt
)(dWt + λtdt). (2.64)

Let πt = diag(St)−1(σT
t )
−1(Mtλt+σt

Yt
) and

φt =

Mt
Yt
− πtSt

Bt
. (2.65)

Note that φtBt + πtSt =
Mt
Yt

, and

πtdBt + πtdSt =
Mt

Yt
rdt +

Mtλt + α

Yt
(dW + λdt) = d(

M
Y
) (2.66)

and so H = (φ, π) is a self-financing strategy. It is 0-admissible since
Mt
Yt

> 0.

Theorem 2.48. If H̃ is L-admissible and LY is in class D and XT(H̃) = ξT

then

X0(H̃) ≥ E(YTξT)

Y0
= X0(H) (2.67)

Proof. Consider

−Yt(X̃t + Lt) ≥ 0 (2.68)

and YtX̃t is a local martingale.

E(YT∧τn LT∧Ln)→ E(YT LT) (2.69)

by uniform integrability assumption. Therefore YX̃ is a supermartin-

gale by Fatau’s lemma, and thus

E(YTξT) = E
(
YTX̃T

)
≤ Y0X̃0 (2.70)
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Example 2.49. A market model with no absolute arbitrage but with a

relative arbitrage.

Consider P = (1, S), where dSt = StσtdWt, n = d = 1, σt > 0 for

all t. On the filtration generated by W and S is a strictly local martingale,

E(ST) < S0 (recall that all positive local martingales are supermartingales)

which implies E(max0≤t≤T St) = ∞.

Definition 2.50. Let Yt = 1 for all t be a state price density. If L is of

class D locally, there exist L-admissible absolute arbitrages.

Definition 2.51. Let Q = P. This is an EMM for the cash numeraire.

If L is of class D locally, there are no relative arbitrages.

Definition 2.52. By existential replication theorem, there exists H

such that XT(H) = ST . Notice that X0(H) = E(XT) < S0 (!)

Note that XT
ST

= 1 a.s. but X0
S0

= p < 1 (so we have a relative

arbitrage). Let H̃ = H − p

0

1

. Then

X0(H̃) = E(ST)− pS0 = 0 (2.71)

XT(H̃) = ST − pST > 0 (2.72)

Xt(H̃) is not of class D. So only admissible if L is wild.
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Black-Scholes

Consider the market model

dBt = Btrdt (3.1)

dSt = St(µdt + σdWt) (3.2)

Then Bt = B0ert, St = S0e(µ−
σ2
2 )t+σWt , and Yt = e−(r−λ22)t−λWt is

the unique state price density with Y0 = 1, where λ = µ−r
σ .

Our goal is to replicate a European claim with payout ξT = g(ST)

where g ≥ 0 and suitably integrable. By our replication theo-

rem, there exists a 0-admissible strategy H such that Xt(H) =

1
Yt

E(YT g(ST)|Ft).

Let dQ
dP

= e−
λ2T

2 −λWT be the unique EMM. By the Cameron-Martin-

Girsanov theorem, Ŵt = Wt + λt is a Q-Brownian motion. Then

ST = Ste(µ−
σ2
2 )(T−t)+σ(WT−Wt) (3.3)

= Ste(−r−σ22)(T−t)+σ(ŴT−Ŵt) (3.4)

and we have

Xt = e−r(T−t)EQ(g(ST)|Ft) (3.5)

=
∫

g(Ste(r−
σ2
2 )(T−t)+σ

√
T−tZ)

e−
z2
2

√
2π

dz (3.6)

Substituting in g(x) = (x− K)+ corresponding to a call option, we
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obtain the price

Ct(T, K) = StΦ(
− log K

St

σ
√

T − t
+ (

r
σ
+

σ

2
)
√

T − t)

− Ke−r(T−t)Φ(
− log K

St

σ
√

T − t
+ (

r
σ
− σ

2
)
√

T − t) (3.7)

Fill in missing lecture —

Black-Scholes price as a so-

lution to BS PDE

Fill in missing lecture —

Black-Scholes price as a so-

lution to BS PDE
3.1 Black-Scholes Volatility

Assume we observe (St)−T≤t≤0 at some discrete intervals ( t
n − 1)T

for i = 0, . . . , n, with

Yi = log
Sti

Sti−1

(3.8)

= (µ− σ2

2
)(ti − ti−1) + σ(Wti −Wti−1) (3.9)

∼ N(a
T
n

,
σ2T

n
). (3.10)

The MLE is then

â =
1
T

n

∑
i=1

Yi =
1
T

log
S0

S−T
(3.11)

σ̂2 =
1
T

n

∑
i=1

(Yi −
âT
n
) (3.12)

and V
(
σ̂2) = 2σ4

n → 0 as n→ ∞.

3.2 Calibration

Black-Scholes model prediction, a call price

Ct(T, K) = CBS(t, T, K, St, r, σ). (3.13)

The Black-Scholes implied volatility for strike K, maturity T at time t

is the unique σ which solves (3.13), denoted ∑t(T, K).

Black-Scholes predicts there is a unique number σ such that

∑t(T, K) = σ for all t, T, K. This fails in most markets.
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3.3 Robustness

Consider a payout of claim g(ST). Assume we believe in Black-

Scholes, and so we believe the price

V(0, S, σ) (3.14)

where

V(t, S, σ) = e−r(T−t)
∫

g(Se(r−
σ2
2 )(T−t)+σ

√
T−tz)

e−
z2
2

√
2π

dz (3.15)

for some σ. Pick σ̂ to solve V(0, S0, σ̂) = ξ0, the initial price of the

claim.

Now, try to replicate the claim with portfolio (φ, π) with

πt =
∂V
∂S

(t, S, σ̂) (3.16)

φt =
Xt − πtSt

Bt
(3.17)

Notice the equation

X0 = V(0, S0, σ̂) (3.18)

dXt = r(Xt − πtSt)dt + πtds (3.19)

has a unique solution given by

Xt = X0ert + ert
∫ t

0
πsd(e−rsSs) (3.20)

so given π, we can solve for X.

In the real model,

dBt = rBtdt (3.21)

dSt = St(µdt + σtdWt) (3.22)

for r, µ constant but σt a stochastic process.
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Then

dV(t, St, σ̂) =
∂V
∂t

dt +
∂V
∂S

dS +
1
2

∂2V
∂S2 d〈S〉 (3.23)

= (
∂V
∂t

+
1
2

∂2V
∂2S

σ2
t S2

t )dt + πtdSt (3.24)

= (rV − rS
∂V
∂S
− 1

2
∂2V
∂S2 S2σ̂2 +

1
2

∂2V
∂S2 σ2

t S2
t )dt + πtdSt

(3.25)

and so

d(Xt −V(t, St, σ̂)) = r(X−V)dt +
1
2

S2(σ̂2 − σ2
t )

∂2V
∂S2 dt (3.26)

and so

XT −V(T, ST , σ̂)− X0 + V(0, S0, σ̂) = XT − g(ST) (3.27)

=
1
2

∫ T

0
e−r(T−s)S2

s (σ̂
2 − σ2

s )
∂2V
∂S2 ds

(3.28)

and so we can estimate the difference between the option and the

replicating portfolio by a weighted average of the gamma multiplied

by the difference in implied and realized volatility over the time

period.
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Local Volatility Models

Consider

dBt = rBtdt (4.1)

dSt = St(µ(t, St)dt + σ(t, St)dWt) (4.2)

= St(rdt + σ(t, St)dŴt) (4.3)

with dŴt = dWt +
µ(t,St)−r

σ(t,St)
dt is a Brownian motion under the equiva-

lent martingale measure Q.

Theorem 4.1 (Dupire). Suppose C0(T, K) = EQ

(
e−rT(ST − K)+

)
. Then

∂C0

∂T
+ rK

∂C0

∂K
=

σ(T, K)2

2
K2 ∂2C0

∂K2 (4.4)

with C0(0, K) = (S0 − K)+ with

σ(T, K) =

√√√√2( ∂C0
∂T + rK ∂C0

∂K )

K2 ∂2C
∂K2

(4.5)

Exercise 4.2. If

C0(T, K) = CBS(t = 0, σ, T, S0, K, r, σ0) (4.6)

show that

σ(T, K) = σ0 (4.7)

for all T, K.
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Lemma 4.3 (Breden-Litzenberger, 1978). Suppose ST has density f

(under Q). Then

C0(T, K) = e−rT
∫ ∞

K
fST (y)(y− K)dy (4.8)

∂C0

∂K
= −e−rT

∫ ∞

K
fST (y)dy (4.9)

∂2C0

∂K2 = e−rT fST (K) (4.10)

Proof (Proof of Theorem 4.1). By Itô’s formula,

(ST − K+) = (S0 − K)+ +
∫ T

0
I(St ≥ K) dSt +

1
2

∫ T

0
δKd〈S〉 (4.11)

= (S0 − K)+ +
∫ T

0
StrI(St ≥ K) +

1
2

S2
t σ(t, St)

2δK(St)dt +
∫ T

0
Stσ(t, St)I(St ≥ K) dŴt.

(4.12)

Taking EQ on both sides, we obtain

erTC0(T, K) = (S0 − K)+ +
∫ T

0

(∫ ∞

K
fSt(y)yrdy

)
dt

+
1
2

∫ T

0
fSt(K)K

2σ(t, K)2dt (4.13)

which gives

erT ∂C0

∂T
+ rerTC0 =

∫ ∞

K
fST (y)yrdy +

1
2

fST (K)K
2σ(T, K)2 (4.14)

Writing y = (y − K) + K and applying the previous lemma, we

obtain the required result.

Remark 4.4. Given a call surface {C0(T, K), T, K > 0} where C0(T, ·) is

smooth, we find the density of ST by

∂2C0

∂K2 = e−rT fST (K) (4.15)

and hence

EQ(e−rT g(ST)) =
∫ ∞

0
g(y)

∂2C0

∂K2 (T, y)dy (4.16)
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If g is convex and smooth, then

g(ST) = g(a) + g′(a)(S− a) +
∫ a

0
g′′(K)(K)(K− ST)

+dK +
∫ ∞

a
g′′(K)(ST − K)+dK

(4.17)

= ∑
Ki≤a

g′′(Ki)(Ki − ST)
+∆Ki + ∑

Ki≥a
g′′(Ki)(ST − Ki)∆Ki (4.18)

4.1 Computing Moment Generating Functions

Consider a model with Bt = B0erT , S positive such that (e−rTSt)t≥0 is

a Q-martingale.

Consider

Θ = {p + qi|0 ≤ p ≤ i, q ∈ R} ⊆ C (4.19)

with i =
√
−1.

Let Mt(θ) = EQeθ log St be the moment generating function of log

St, with θ = p + iq, 0 ≤ p ≤ 1, and so

EQ|eθ log St | = EQ(Sp
t ) ≤ (EQSt)

p = (ertS0)
p < ∞ (4.20)

and so Mt(θ) is well defined for θ ∈ Θ.

Theorem 4.5.

EQ(e−rT(ST − K)+) = S0 −
e−rTK1−p

2π

∫ ∞

−∞

MT(p + ix)e−ix log K

(x− ip)(x + i(1− p))
dx

(4.21)

for all 0 < p < 1.

Theorem 4.6.

C0(T, K) = S0
e−rTK1−p

2
π
∫ ∞

−∞

MT(p + ix)e−ix log K

(x− ip)(x + i(1− p))
dx (4.22)

Lemma 4.7.

1
2π

∫ ∞

−∞

e−iax

x− ip
x + i(1− p) =

e−ap a ≥ 0

aa(1−p) a < 0
(4.23)

which can be shown via contour integration.
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Let γR be the semi-circle of radius R above the x-axis in the complex

plane. Then

∫
γR

eiax

(x− ip)(x + i(1− p))
dx = 2π Res

x=ip
= 2πe−ap. (4.24)

and we have

∫ R

−R
+
∫ π

φ=0

eia(R cos φ+i sin φ)

(Reiφ − ip)(Reiφ + i(1− p))
dφ ≤ e−aR sin φ

1
2 R

→ 0 (4.25)

and so we obtain our required result.

Proof (Proof of 4.6). We have

e−rT(ST − K)+ = e−rTST

− K1−pe−rT

2π

∫ ∞

−∞

ep log ST+ix log ST−ix log K

(x− ip)(x + i(1− p))
dx (4.26)

Now computing EQ, using Fubini’s theorem to justify the inter-

change as

E

(∫ ∣∣∣∣∣ e(p+ix) log ST−ix log K

(x− ip)(x + i(1− p))

∣∣∣∣∣ dx

)
= MT(p)

∫ 1√
(x2 + p2)(x2 + (1− p)2)

< ∞

(4.27)

Remark 4.8. By Holder’s inequality, p 7→ log MT(p) = ΛT(p) is convex.

ΛT(0) = 0, ΛT(1) = log S0 + rT, and p 7→ ΛT(p) is smooth. It has a

minimal point p = p? ∈ (0, 1) at

ΛT(p? + ix) ≈ ΛT(p?) + Λ
′
T(p?)(ix) +

1
2

Λ
′′︸︷︷︸

≥ 0 by convexity

(p?)(ix)2 (4.28)

= ...

(4.29)

by Taylor’s theorem.
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Then

∫ MT(p? + ix)e−ix log K

(x− ip)(x + i(1− p))
≈ MT(p?)

∫ e−Λ
′′
T (p?)x2

p(1− p)
dx (4.30)

=
MT(p?)
p(1− p)

√
2π

Λ′′T(p?)
(4.31)

4.2 The Heston Model

dBt = Btrdt (4.32)

dSt = St(rdt +
√

vtdWS
t ) (4.33)

dvt = λ(v− vt)dt + c
√

vtdWV
t (4.34)

WS, Wv are Brownian motions under some EMM Q, with correla-

tion ρ. For instance, Wv
t = ρWs

t +
√

1− ρ2d⊥t with Ws, W⊥ indepen-

dent.

v > 0 is the mean-reversion level. λ > 0 is the mean reversion rate.

We have vt ≥ 0 almost surely [Cox et al., 1985].

Our goal is fix T > 0, θ ∈ Θ, want to compute E
(

eθ log ST
)

.

Idea: Let (V(t, St, vt))0≤t≤T be chosen so that it is a martingale

with V(T, ST , VT) = eθ log ST . The moment generating function is then

V(t = 0, S0, v0).

By Itô,

dV(t, St,vt) =
∂V
∂t

dt +
∂V
∂S

dS +
1
2

∂2V
∂S2 d〈S〉+ ∂V

∂v
dv +

1
2

∂2

∂v2 d〈v〉+ ∂2V
∂v∂s

d〈S, v〉.

(4.35)

We seek to make the dt terms vanish. Thus,

∂V
∂t

+
∂V
∂S

rS +
1
2

∂2V
∂S2 S2v +

∂V
∂v

λ(v− v) +
1
2

∂2V
∂v2 c2v +

∂2V
∂S∂v

ρSvc = 0.

(4.36)

The inspired idea is to look for solutions of the form

V(t, S, v) = eθ log S+R(T−t)v+Q(T−t) (4.37)

with R(0) = Q(0) = 0.
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Substituting this functional form in, we obtain

R′v−Q′ + rθ +
1
2

θ(θ − 1)v + Rλ(v− v) +
1
2

R2c2v + θRρvc = 0

(4.38)

Collecting terms, we haveR′ = 1
2 θ(θ − 1) + 1

2 R2c2 + (θpc− λ)R

Q′ = rθ = Rλv
(4.39)

which are Riccati equations, which have an explicit solution.

4.3 American Options (Guest Lecture)

Suppose we have some assets d and our bank account Bt. The ran-

dom assets evolve as

dSi
tS

i
t(µ

i
tdt +

d

∑
j=1

σij(t, St)dW j
t ) (4.40)

The option we want to price pays g(Sτ) if exercised at time τ. The

exercise time τ must be a stopping time, with τ ≤ T, the expiration

time.

For technical reasons, suppose g is bounded. For examples sake,

we assume we have one sock, and consider an American put g(S) =

(K− S)+.

If there are d assets, we might have a min-put, we have

g(S) = (K− min
1≤i≤d

Si)+ = max
1≤i≤d

(K− Si)+ (4.41)

To solve this pricing problem, write

L f =
1
2 ∑

i,j
SiSjaij(t, S)

∂2 f
∂Si∂Sj

+ ∑
i

rSi
∂ f
∂Si
− r f +

∂ f
∂t

(4.42)

where a = σσT , and suppose we can find some V(t, S) ∈ C1,2 such

that

max{LV, g−V} = 0, V(T, ·) = g(·). (4.43)
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Then

V(0, S0) = sup
τ≤T

E
(
e−rτ g(Sτ)|S0

)
(4.44)

Why is this true? Consider

d(V(t, St)e−rt) = Vs(t, St)StσtdWt + LV(t, St)dt (4.45)

If we let τ be any stopping time ≤ T, and we let T ↑ ∞ be a

sequence of stopping times “rediscovering” the local martingale

VS(t, S)SσdW, and we shall then have

V(0, S0) = E

(
e−rτn V(τn, Sτn)−

∫ τn

0
LV(u, Su)du

)
(4.46)

≥ E
(
e−rτn V(τn, Sτn)

)
(4.47)

≥ E
(
e−rτn g(Sτn)

)
. (4.48)

since LV ≤ 0.

If we let n→ ∞, τn ↑ τ, we must have that

V(0, S0) ≥ sup
0≤τ≤T

E
(
e−rτ g(Sτ)

)
. (4.49)

To show that there is equality, consider

τ? = inf{t|V(t, St) = g(St)} (4.50)

We know that V(T, ·) = g(·), and so τ? ≤ T. We also notice that in

[0, τ), LV = 0 because in [0, τ), g−V < 0, and max{LV, g−V} = 0.

Now going back to the first calculation, if we write τ?
n = τ? ∧ Tn.
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V(0, S0) = E

(
e−rτ?n V(τ?

n , Sτ?n )−
∫ τ?n

0
LV(u, Su)du

)
(4.51)

= E
(
e−rτn V(τn, Sτn)

)
(4.52)

= E
(

e−rτ?V(τ?, Sτ?) : τ? ≤ Tn

)
+ E

(
e−rTn V(Tn, STn) : τ? > Tn

)
(4.53)

= E
(

e−rτ? g(Sτ?)|τ? ≤ Tn

)
+ E

(
e−rTn V(Tn, STn) : τ? > Tn

)
(4.54)

→ E
(

e−rτ? g(Sτ?)
)

. (4.55)

n We need to show that the V we found is bounded.

Example 4.9. American puts in one dimension.

We have an envelope V.

We find V by solving

0 = −rV =
1
2

σ2S2VSS + rSVs (4.56)

for S = q with boundary condition

V(q) = (K− q)+ (4.57)

This we can write as

V(S) = AS + BS−2r/σ2
(4.58)

with the boundary condition V(q) = (K− q)+.

Suppose we let q be a parameter of the stopping rule, work out the value

and optimize over q. The value is

V(S) = (K− q)(
S
q
)
− 2r

σ2 = S−
2r
σ2 q

2r
σ2 (K− q) (4.59)

Optimizing over q, we have

2r
σ2q

=
1

K− q
⇒ q =

2rk
σ2 + 2r

. (4.60)

We can check, if we use this value of q, then V′(q) = −1 = ∂
∂S (K −

S)|s=q.
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It can be shown that sup0≤τ≤T E(e−rτ g(Sτ)) ≤ minM∈M0 E(sup...) Fill in from lecture notes.?Fill in from lecture notes.?





5

Bond Markets and Interest Rates

Definition 5.1. A zero coupon bond is a contingent claim that pays

exactly one unit of money at maturity.

We assume that ξT , the payment of the bond, is 1 a.s. - that is,

there is no credit risk.

Definition 5.2. P(t, T)is the price at time t for a bond maturing at

time T.

Definition 5.3. The yield y(t, T) is defined as

y(t, T) = − 1
T − t

log P(t, T) (5.1)

or equivalently

P(t, T) = e−(T−t)y(t,T) (5.2)

Definition 5.4. We call limT↓t y(t, T) = rt the “spot” or “short” rate.

We call limT↑∞ y(t, T) if it exists.

Definition 5.5. The forward rate f (t, T) is defined

f (t, T) = − ∂

∂T
log P(t, T) (5.3)

or equivalently

P(t, T) = −
∫ T

t
f (t, u)du (5.4)

Theorem 5.6. There is no arbitrage in the market prices (P(t, T1), P(t, T2), . . . , P(t, Tn))

if YtP(t, T)t∈[0,T] is a local martingale for all T, where Y is a state price
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density.1 1 Recall relative arbitrage, admissible
class D, etc.

In particular, there is no arbitrage if P(t, T) = 1
Yt

E(YT |Ft)

Introduce the bank account dBt = Btrtdt ⇐⇒ Bt = B0e
∫ t

0 rsds

where r is the short rate. Define an equivalent martingale measure

with density dQ
dP

= BTYT
B0Y0

. Rewrite

P(t, T) = BtEQ

(
1

BT
|Ft

)
= EQ

(
e−
∫ T

t rsds|Ft

)
(5.5)

By the law of one price,

f (t, T) = − ∂

∂T
log EQ

(
e−
∫ T

t rsds|Ft

)
(5.6)

=
EQ

(
rTe−

∫ T
t rsds|Ft

)
EQ

(
e−
∫ T

t rsds|Φt

) , (5.7)

and so f (t, T) can be seen as the “market weighted conditional expec-

tation of rT given at Ft.”

Alternatively, we have

EQ

(
( f (t, T)− rT)e−

∫ T
t rsds|Ft

)
= 0 (5.8)

and so the forward rate is such that the claim with payout f (t, T)− rT

has price 0 at time T.

Fill in missing lecture from

Monday 2 December

Fill in missing lecture from

Monday 2 DecemberThere are two approaches to bond market pricing:

(i) Let (rt)t≥0 be fundamental, derive everything else: f (t, T), etc.

(ii) Model ( f (t, T))0≤t≤T directly - the Heath et al. [1992] approach.

5.1 The Heath et al. [1992] Model

Theorem 5.7. Suppose d f (t, T) = a(t, T)dt + σ(t, T) · dŴt for a d-

dimensional Brownian motion Ŵ where σ(t, T) is suitably measurable and

integrable, and

a(t, T) = σ(t, T) ·
∫ T

t
σ(t, u)du (5.9)
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Define rt = f (t, t) and P(t, T) = e−
∫ T

t f (t,u)du. Then

(
e−
∫ t

0 rsdsP(t, T)
)

0≤t≤T
(5.10)

is a local martingale.

Remark 5.8.

f (t, T) = f (0, T) +
∫ t

0
a(s, T)ds +

∫ t

0
σ(s, T) · dŴs. (5.11)

Proof. Recall that if d log Mt = − |bt |2
2 dt + bt · dŴt, then M is a local

martingale if and only if Mt = M0e−
1
[
2]
∫ t

0 |bs |2ds+
∫ t

0 bs ·dŴs .

By differentiation, we have

d
(
−
∫ t

0
rsds−

∫ T

t
f (t, u)du

)
= −rtdt + f (t, t)dt−

∫ T

t
d f (t, u)du

(5.12)

= −(
∫ T

t
a(t, u)du)dt− (

∫ T

t
σ(t, u)du) · dŴt.

(5.13)

noting that

∫ T

t
a(t, u)du =

1
2
‖
∫ T

t
σ(t, u)du‖2 (5.14)

gives the required result.

Example 5.9 (Ho and Lee [1986]). Assume d = 1, σ(t, T) = σ0 constant.

Then

d f (t, T) = ((T − t)σ2
0 )dt + σ0dŴt (5.15)

f (t, T) = f (0, T) +
∫ t

0
(T − s)σ2

0 ds + σ0dŴt (5.16)

rt = f (0, t) +
1
2

σ2
0 t2 + σ0Ŵt (5.17)

Example 5.10 (Hull and White [1990]). Again, assume d = 1, σ(t, T) =

σ0e−λ(T−t).

d f (t, T) = σ2
0 e−λ(T−t)(1− e−λ(T−t))dt + σ0e−λ(T−t)dŴt (5.18)

drt = λ

(
f ′0(t)

λ
+ f0(t) +

σ2
0

2λ2 (1− e−λt)− rt

)
+ σ0dŴt. (5.19)
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Example 5.11 (Kennedy [1997]). This is a Gaussian random field model.

Suppose σ(t, T) is not random, so

f (t, T) = f (0, T) +
∫ T

0
a(s, T)ds +

∫ t

0
σ(s, T)dŴs (5.20)

is Gaussian. Then

EQ( f (t, T)) = f (0, T) +
∫ t

0
a(s, T)ds (5.21)

Cov( f (s, S), f (t, T)) =
∫ s∧t

0
σ(u, S) · σ(u, T)du (5.22)

Turning this around, we can model

( f (t, T))0≤t≤T (5.23)

as a Gaussian random field with

Cov( f (s, S), f (t, T)) = cs∧t(S, T) (5.24)

E( f (t, T)) = f (0, T) +
∫ T

0
cs∧t(s, T)ds, (5.25)

and thus there is no need to introduce a Brownian motion. For instance,

d〈 f (t, S), f (t, T)〉 = σ(t, S) · σ(t, T)dt (5.26)

= σ0e−β|T−S| (5.27)

and so we have an exponentially decaying correlation between forward rates

of different maturities.

Example 5.12. The HJM equation

d f (t, T) = a(t, T)dt + σ(t, T)dWt (5.28)

T = t + x, ft(x) = f (t, t + x) (5.29)

d ft(x) = (
∂ f
∂x

+ at(x))dt + σt(x)dWt (5.30)

Fix a separable Hilbert space F = { f : R+ → R}. Then (dropping the

x),

d ft = (A ft + αt) dt + σtdWt (5.31)
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can be interpreted as an evolution equation in this function space. In the

simplest case, σt is a constant vector F ⊗Rd, αt is a constant vector in F,

then ( ft)t≥0 is an F-valued Ornstein-Uhlenbeck process.

We can apply techniques from statistics (e.g. PCA) if this model has an

invariant measure — shown in early 2000’s.
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