ANDREW TULLOCH

ADVANCED FINANCIAL
MODELS

TRINITY COLLEGE
THE UNIVERSITY OF CAMBRIDGE






Contents

Discrete Time Models 5

1.1 Standing Assumptions 5

1.2 Setup 5

1.3 A Detour into Martingales 7
1.4 Contingent Claims 14

1.5 American Claims 18

Continuous Time Models 21

2.1 Diversion into Stochastic Calculus 21
2.2 [td6’s Formula 23

2.3 Arbitrage Theory in Continuous Time 27

Black-Scholes 35
3.1 Black-Scholes Volatility 36
3.2 Calibration 36

3.3 Robustness 37



4 ANDREW TULLOCH

Local Volatility Models 39

4.1 Computing Moment Generating Functions
4.2 The Heston Model 43

4.3 American Options (Guest Lecture) 44

Bond Markets and Interest Rates 49

5.1 The Heath et al. [1992] Model 50

Bibliography 55

41



1

Discrete Time Models

1.1 Standing Assumptions

(i) Zero dividends

(ii) Zero tick size
(iii) Zero transaction costs
(iv) Infinitely divisible transactions
(v) No short-selling constraints
(vi) No bid-ask spread

(vii) No market impact (infinitely deep market)

1.2 Setup
Consider a probability space (Q), F,P).
Definition 1.1. A random variable is a measurable map X : O — R

Definition 1.2. A stochastic process Y = (Y})¢g is a collection of

random variables. For us, I = {0,1,...} or [0,00).

Definition 1.3. A filtration F = (F);>¢ is a collection of sub-o-
algebras on F such that s C F; forall0 < s < t (discrete and

continuous time).

Example 1.4. Tossing coins.
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(i) Q={HH HT,TH,TT}
(ii) F is all 16 subsets of ()
(iii) P(A) = 14
Possible filtration
(i) Fo=1{2,Q}
(i) F, ={0,0,{HH,HT},{TH,TT}}
(iii) Fp=F
Definition 1.5. A process Y is adapted if and only if Y; is F;-measurable.
Throughout the course, F is assumed trivial.

Definition 1.6. Given a filtration F = (F});>¢ in discrete time, a pro-
cess X = (X¢)¢>1 is predictable if and only if X; is F;_j-measurable.
Sometimes we need Xj to be defined, so we just ask that X is

JFo-measurable.

Definition 1.7. Given P = (P%);>0 prices process in discrete time. An
investment/consumption strategy is a predictable process (H, c)
where H; takes values in R" and ¢; > 0 and satisfies the self-

financing condition
Hi1—P1=Ht P+ (1.1)

for all t > 1.

H; models the portfolio during (t — 1, ], and ¢; models the con-

sumption during (t — 1, t].

Notation. X;(H) = H; - P; is the wealth at time t. Note that given H, we
can find C by solving the self-financing condition.

If ¢t = 0 a.s. for all t then H is a pure investment strategy.

Example 1.8. Given an initial wealth x > 0, find (H, c) to maximize

E(U(ct))) (1.2)

T
i=1
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subject to Xt(H) = 0 where T > 0 is not random.

Assume that U is strictly increasing, strongly concave, and bounded from

above.

1.3 A Detour into Martingales

Proposition 1.9. Let X be integrable and G C F. Then there exists an

integrable, G-measurable random variable X such that

E(XI(G)) = E(XI(G))) (1.3)
forall G € G. Moreover, it is unique in the sense that if X has the same
property, then X = X.

Definition 1.10. Such X is written [E(X|G), the conditional expecta-
tion of X given G.

Useful properties of conditional expectation:
(i) If X is G-measurable, then E(X|G) = X.

(ii) If X is independent of G (that is, X and I(G) are independent for
all G € §), then E(X|G) = E(X).

(iii) (Tower property) If X C G C F, then
E(E(X|G) [H) = E(E(X|H)|G) = E(X|H) (1.4)
(iv) (Slot property) If Y is G-measurable and XY is integrable, then
E(XY[G) = YE(X|9) (1.5)

Definition 1.11. A martingale (X;);>¢ with respect to a filtration IF
has the properties
e E(|X¢]) <ooforallt,
o E(X;|Fs) =Xsforall0 <s <t
Note that X is automatically adapted.

Exercise 1.12. Suppose X is an integrable discrete-time process such that

E(X¢|Fi—1) = X¢—1 forall t > 1. Show that X is a martingale.
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Example 1.13. Let §;, i = 1,2,... be independent, integrable random
variables with E(§;) = 0. Let Fy = 0(G1,...,8t), Xe =61+ 8o+ + Gt

Then X is a martingale.

Example 1.14. Let ¢ be integrable and let [F be a filtration, and X; =
E(¢|F)

Proof. Integrability comes from integrability of conditional expecta-

tions.

E(Xi|Fs) = E(E(S| 1) | F5)
= E(¢|Fs)

S

O

Example 1.15. Suppose X is a discrete-time martingale and Y is predictable

and bounded. Let Zy = YL _| Ys(Xs — Xs_1). Then Z is a martingale.

Proof. Integrability checked by integrability of X and boundedness of
Y.
Z;_1 is F;_1 measurable since measurability respects algebraic

operations.
E(Zt| Fr-1) = E(Zi—1 + Ve (Xe — Xp-1) | Fr-1)

=Zia+ Yy E| X=X q|Fia

slot property =0

Theorem 1.16. Suppose u : [0,00) — R is strictly increasing, strictly
concave, differentiable, bounded from above. Suppose there exists investment
strategy H* and consumption c; = (Hf_; — Hf) - P,_y, and a state price
density Y* such that u'(c}) = Y/ . Then (H*,c*) is optimal for the
problem max Y.I_; E(u(cy)), subject to Xo(H) = x, X7(H) = 0.

Proof. We consider the case where () is finite.

Let L(H,c,Y) = E (ZL (u(ct) + Yigr (Heoa P(E+1) — cf — Hy - PH)))
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Note that L(H, ¢, Y) is the objective when (H, c) is feasible. Then

T
L(H,c,Y)=E (Z (u(cy) — cth_1)> +YoX — Y;_1H:P;_4
=1
T-1
+ ) Hi(YiPr = Y; 1P q) (1.6)
=1

First note that u(c}) — Y} cf > u(cy) — Y} ¢ since u'(c}) = Y},
(first order condition for the maximum of the concave function ¢ —
u(c) — ye).

Second, by definition, YP is a martingale, and by finiteness of (),
the predictable process H is bounded. Therefore, M; = Y\ | Hs(YsPs —
Y;_1DPs_1) is a martingale and E(M;) = M; = 0.

Putting this together, L(H,c, Y*) < L(H*,c*, Y*). O

Theorem 1.17. An absolute arbitrage is an investment/consumption strat-
eqy (H,c) such that Xo(H) = 0, X7r(H) = 0, at some non-random time
horizon T > 0, and IP(Zthl cr > 0) > 0.

Definition 1.18. A numeraire asset is one whose price is strictly

positive almost surely.

Example 1.19. Here is a market without a numeraire. Py = 1,Py =
-1,P =1
Arbitrage:

H=-1c=1Xy=1,c,=1,Hy = 0X, =0

Exercise 1.20. Suppose Hj is an arbitrage and the market has a numeraire.
Then there exists a pure investment strateqy H' and a time horizon T' such

that Xo(H') = 0, Xp(H') > 0 a.s., and P(X/(H') > 0) > 0.

Theorem 1.21. A market model has no arbitrage if and only if there exists a

state price density.

Proof. T = 1 case. Suppose there exists a state price density (Y;);—01
without loss Yy = 1. Let Y = Y; for clarity, Y > 0 a.s.

Suppose (H;);—1 = H; = H (non-random vector) is a candidate
arbitrage, so H - Py < 0and H - P; > 0 a.s. We must show H - Py =
0=H-P; as.

9
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SinceY > 0,H-P; >0 = E(YHP;) > 0,but H E(YP;) =

———
state price density

HPy <O0.

By the pigeonhole principle, if Z > 0 a.s and E(Z) =0, then Z =0
a.s.

Thus, YH-P; = 0a.s.,,and since Y > 0 a.s.,, H)P; =0 = HPy) =0
a.s.

Now consider the other direction. Let Y = {Y > Oa.s, E(Y||P1||) <
a}. Yis non-empty since Yy = e IPll Y and ) is convex. Let
C ={E(YP,),y € Y}. Suppose Py ¢ C.

By the separating hyperplane theorem, there exists H € IR" such
that

(i) Forallc € C, H(c — Py) > 0.
(i) There exists c* € C, H(c* — Py) > 0.
This implies
(i) ForallY e Y, E(YH-P;) > H- Dy
(ii) There exists Y* € Y, E(YH-P;) > H - P,.

Lety = {Y > 0: E(Y||Py]|) oo}. Let P = {E(YP;) : Y € Y} C R"
Suppose Py & P.

By the separating/supporting hyperplane theorem there exists a
vector H € R" such that

(i) Forallpe P, H-(p—Py) >0,
(ii) There exists p* € P such that H - (p* — Py) > 0.

If p € P then p = E(YP;) for some Y. Then

H-p=E|Y H-P ,H-Py = — .
p 1 0 c (1.7)
X, time 1 wealth consumption in (0,1]

Restating, we then have:
(i) ForallY € Y, E(YH -P;) > H-P

(ii) There exists Y* € V, E(YH-P;) > H - P,.
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We need to show that X > 0as., ¢ > 0,P(X+c>0) > 0. Let
Yo = e Il € Y. Fore > 0,1et Y = €Y in (i), then €E(YpX) > ¢ =
c > 0 by taking € — 0.

Let Y = (1I(X < 0) +1)Yp in (i), which implies

E(YoXI(X < 0)) > —e(E(XoY)+c) =0 (1.8)

as e — 0.

Then Yy > 0, XI(X < 0) < 0 by pigeonhole principle,
P(X<0)=0= X >0 (1.9)

a.s.

By (i), P(X = 0,c = 0) < 1. O

Definition 1.22. An integrable adapted process X is a supermartin-

gale is a supermartingale if
E(X¢|Fs) < X (1.10)

forall0 <s <t

Proposition 1.23. If X is a supermartingale and E(Xt) = X for some

non-random T > 0, then (Xy)o<i<T is a martingale.

Proof. Let Yy = Xs — E(X¢|Fs) > 0 by assumption. Then

]E(Ys,t) = ]E(Xs - ]E(]E(XT“FS)))
= ]E(Xs) _]E(XT)

IN

Xo - Xo
~—~ ~—~
supermartingale by assumption

By pigeonhole, Y; r = 0 a.s. Then X = E(X7|F;) forall0 <s < T.

So by the tower property, (Xs)o<s<T is a martingale. O

Proof (Easy direction of 1FTAP). Let T > 1, and finite sample space.
Let H be a strategy, and X = X(H) be a corresponding wealth pro-
cess. Let Y be a state price density. Then XY is a supermartingale,

as?!

11

* This relies on the finiteness of () since

this guarantees that H is bounded, and

so we call use the slot property
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]E(Xth|]:t,1) = IE(Ht . Pth‘thl)
= H;y CE(PYi|Fiq)
—~—
slot property
=H; - P1Y;
= (Hy1Prq —ct)Yi 1
< Xi-1Yi1.

Suppose H is such that Xp = 0 and Xt = 0 a.s. for some non-

random T > 0. Then
IE(YTXT) =0= YOXO (1.11)

and so XY is a martingale by the previous proposition. This implies
Y X = E(Y:X¢|F;) = 0, which implies X; = 0 for all ¢.
By the calculation,
E(XYi| Fro1) = (X1 +6) Ve

=c =0

for all ¢. O

Definition 1.24. A stopping time for a filtration (F; )T is a random
variable T : 3 — T U {co} such that {t < t} € Fiforallt € T

(discrete or continuous time).
Notation. M;\r = M is the martingale M stopped at T.

Proposition 1.25. Let M be a martingale and T a stopping time, and let

Nt = Mipr. Then N is also a martingale.

Proof.
t
Ni=Mo+ ) I(s <7)(Ms—M;_1) (1.12)
s=1
and I(t < s —1) is F;_j-measurable and bounded. O

Definition 1.26. A local martingale is an adapted process X such that

there exists an increasing sequence of stopping times 7;; 1 oo such
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that X™ is a martingale for all n.
Remark 1.27. Martingales are local martingales.

Proposition 1.28. Let X be a local martingale (discrete time). Let K be

predictable and let Yy = Y\ Ks(Xs — Xs_1). Then Y is a local martingale.

Proof. Since X is a local martingale, there exists a sequence 0, — o

stopping times such that X" is a martingale. Let
T, = inf{t > 0: |K; 1| > N} (1.13)

Then we have

t

_ T T

Xin( ou ATy ) = 2 KI(s<t) ( Xr—X", ) (114

N—— s=1 ﬁ,—/ o
stopping time bounded and predictable martingale difference

O

Example 1.29. Let v, { be random variables with ¢ integrable and E(¢) =
0. Let F = o(v), Fo = 0(v,&). Let X1 = 0, Xo = v¢. Then X is a local
martingale.

If the product v is also integrable, then X is a true martingale, otherwise
E(X|F7) is not defined.

Proposition 1.30. Let X be a local martingale such that there exists an
integrable process Y such that Y; > | X;| for all 0 < s < t. Then X is a true

martingale.

Proof. By assumptions there exists a sequence Ty — oo such that X™

is a martingale. Also, |Xiar, < Y; which is integrable. Then

E(X¢|Fs) = IE( lim Xt/\TN|]-"s> (1.15)
N—oo

= A}E}IZO]E(XMTM}'S) (1.16)

= Z\}liréo Xsaty (1.17)

=X (1.18)

O

Corollary 1.31. In discrete time, if X is a local martingale and E(|X;|) <
oo for all t > 0 then X is a martingale.
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Proof. Let Y; = Y\, |X;|, and Y is integrable by assumption. O

Proposition 1.32. If X is a local martingale (in discrete or continuous

time) and X; > 0 almost surely for all t, then X is a supermartingale.

Proof. First, X; is integrable, since

E(|X:]) = E(X;) (1.19)
=E <I\}1i>l}o Xt/\TN> (1.20)
< lgnjng(XtATN) (1.21)
= liminf Xpa, (1.22)

N—oo
= Xy < o0. (1.23)

Now,

E(X¢|Fs) = E(lim Xiary | Fs) (1.24)
< liminfE(Xiazy | Fs) (1.25)
= liminf Xspzy (1.26)
= X; (1.27)
O

Corollary 1.33. In discrete time, non-negative local martingales in dis-

crete time are martingales.

Proof. Let X be the local martingale. Then E(|X;|) < co forallt > 0
by Fatau. The result follows from the last corollary. O

Theorem 1.34. Let X be a discrete time local martingale. Fix T > 0

non-random. Then (X )o<¢<T is a true martingale if either
(i) E(|X1]) < o0, 0r

(ii) X1 >0

1.4 Contingent Claims

Setup - P is a price process (n-dimensional space, adapted).



ADVANCED FINANCIAL MODELS

Two types of claims

(i) European - specified by a time horizon T (maturity date or ex-
piry) and a Fr-measurable random variable {r (the payout of the

claim).

(ii) American - specified maturity date T and an adapted process

(&t)o<t<T Where {; is the payout if owner of claim chooses to exer-

cise at time t < T.

Example 1.35. A call option is the right, but not the obligation, to buy a

certain stock at a fixed price sometime in the future.

&r = (St —k)* (1.28)
Gr= (S —k)7" (1.29)
forall0 <t <T.

Definition 1.36. A European contingent claim is attainable or
replicable if there exists a pure investment strategy H such that

Xr(H) = {1 almost surely.

Theorem 1.37. Suppose C; is the price of attainable claim for 0 < t < T. If
the augmented market (P, ) has no arbitrage then & = X¢(H) a.s.

Proof. Let T = inf{t > 0: X; # &;}. Let H; = sign(&;, X;)I(t > 1) (H;, —1).
Then Cry1 = |CT — XT|, Xt(H) = Ht . (Pt,gt), Xo(H) = 0, XT(H) =

0, and ¢; = 0O for all ¢ if and only if there is no arbitrage. O

Theorem 1.38. Suppose Y is a state price density of the original market

with prices P. Suppose ¢t is the payout of an attainable claim, suppose

either
(i) E(|Gr|YT) < 00, 0r
(ii) ¢ > 0as.

If the augmented market (P, ¢) has no arbitrage, then

gt = %E(YTCTU?) (1.30)
t

forall0 <t <T.

15
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Proof. By the previous result, there exists H (pure investment strat-
egy) such that X;(H) = {; for all t. But XY is a local martingale.
From before, if either XYt is integrable or non-negative, the process

XY is a true martingale.

Cth = Xth = ]E(XTYT|.Ft) = ]E((:TYT‘}—,&) (1.31)
as required. O
Remark 1.39. When our price process can be decomposed into a numeraire,

so P = (N,S), we can let Q be an equivalent martingale measure. If either

Eq (1%) < 0o, 0r {7 > 0, then

Gt = NiEg (Ié\rlTTVt) (1.32)

Theorem 1.40. Suppose ¢; is the price of a contingent claim at time t (not
necessarily attainable). Suppose that the augmented market (P,¢) has no

arbitrage. Then there exists a positive process Y such that

P = S E(YrPr|F) (139
t

& = S E(vrErlF) (139
t

Here, (1.33) shows Y is a state price density for the original market, and

(1.34) shows Y is a state price density for the augmented market.
Proof. The proof is just 1FTAP applied to the augmented market. O

Example 1.41. Let Py = (By1,St). Byt is price of bond maturing at T,
with Byt = 1 almost surely. S is a stock with S; > 0 for all t. Let c; be the
price of a call with payout (St — K)™. Suppose (By,r, St, Ct)c(o,1] has no
arbitrage.

In general, since the payout of the call is non-negative then c; > 0. Also,
(St —K)" > St —K =St — KBr,r = (=K, 1) - (B 1,5¢).

This implies

ct > St — KByt (1.35)

Then ¢y > (S¢ — KBy 1), and (St — K)™ < St, thus ¢; < Sy
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If there exists a state price density Y for (B, S) such that

1
Ct = Yt]E(YT(ST — K)Jr“/_“t) . (136)
Example 1.42. A put option is equivalent to (K — Sp)* = K — St +
(St —K)* = (K,-1,1) - (Br.1, S, Cr). If pt is a no-arbitrage price of the
put, then
pt = KBy — St + ¢t (1.37)

Definition 1.43. A market is complete if and only if every Euro-
pean contingent claim is attainable. A market that is not complete is

incomplete.

Theorem 1.44 (Second fundamental theorem of asset pricing). A
market with no arbitrage is complete if and only if there exists a unique (up

to scaling) state price density.

Proof. Suppose the market is complete. Let Y, Y’ be state price densi-
ties with Yo = Y) = 1. Fix T > 0 and let {7 > 0 be Fr-measurable.
By completeness, there exists a pure investment strategy H such that
Xr(H) = ¢r-.

From before,
E(Yrér) = Xo(H) = E(Y7l7) (1.38)

and thus E(&r(Yr — Y;)) = 0. Let {r = I(Yr > Y}). Then Yy < Y}

almost surely, and so by symmetry, Yr = Y7.
A claim with payout {7 > 0 is attainable if there exists x > 0 such

that IE (Y{/—E'T) = x = Xo(H) for all state price densities.? 2 Proof in example sheet
Given there exists a unique state price density, every non-negative

claim is attainable. The conclusion follows by observing &r = &f —

¢r- O

Theorem 1.45. Suppose that the price process P is n-dimensional and the

market is complete. The for each t > 0, there are no more than n' disjoint

sets of positive probability F;-measurable sets of positive probability. In

particular, the random vector Py takes on at most n*values.

Proof. Consider thet = 1 case. Let Ay,..., Ay be disjoint F7-
measurable sets with P(A;) > 0. We claim the set {I(4;)} is linearly

17
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independent.

Suppose Y; a;1(A;) = 0. Multiplying by T(A;) implies a;I(A;) = 0
almost surely by disjointness. Since IP(A;) > 0 by assumption we
have a; = 0.

By completeness, each I(A;) is attainable, so
span{l(A;)} C {H P, H € R"} = span{P},...,P}'} (1.39)

O

1.5 American Claims

Recall that the payoff of an American claim is specified by an adapted
process (&t)o<t<T where §; is the payout if the claim is executed at

time .

Theorem 1.46. Suppose the market is complete. Then there exists a (pure
investment) strategy such that X;(H) > &; forall 0 < t < T, and there
exists a stopping time T* such that X~ (H) = {p.

Furthermore, Xo(H) = SUP,topping time T < T E(Y:&c) where Y is the

unique state price density such that Yy = 1.

Definition 1.47. Let Z be an adapted integrable process (Z;)o<¢<T-
The Snell envelope of Zis the process U defined by Ur = Zr, U; =
max{Z;, E(U;1|F)} for 0 <t < T-—1.

Remark 1.48. Note that U; > Zfor all t, and U is a supermartingale since
Uy > E(Upq|Fr).

Theorem 1.49 (Doob decomposition). Let U be a discrete-time su-
permartingale. Then there exists a martingale M with My = 0, and a

non-decreasing process A with Ay = 0 such that Uy = Uy + M; — Ay.

Proof. Let My = Ag = 0, My11 = My + Uy — E(Ups1]Fr), and
App1 = A+ Uy — E(Up41|Fr). By induction, Ay is predictable. A is
non-decreasing as U is a supermartingale.

Now, we show uniqueness. Suppose U = Uy + M — A = Uy +
M — A" . Then M— M = A— A’,and as A — A’ is predictable, we

have M — M’ is a predictable martingale. In discrete time, predictable
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martingales are almost surely constant. Thus, M; — Mj = My — M|, =

0, and thus we have demonstrated uniqueness. O

Theorem 1.50. Let Z be integrable and adapted, U is a Snell envelope, with
Doob decomposition U = Uy + M — A. Let T = inf{t > 0|A;4; > 0}
with the convention ™ = T on {A; = OVt}.

Then U = Uy + My = Zo».

Remark 1.51. T* is a stopping time since A is predictable.

Proof. Note that A« = 0 but Ar«;q > 0. We have

Uy = Uy + My — Ay (1.40)
= max{Zy, E(Uy41|F¢) } (1.41)
= max{Z;, Up+ M; — Ay1}. (1.42)

So Uy + M+ = max{Z+, Uy + M — Arx_1}, which implies
Up + M+ = Z» = U~ as required. O

Theorem 1.52. Under the same hypothesis as before,

Uy = sup E(Z;). (1.43)
stopping times T < T
Proof. By the optional stopping theorem, Uy > E(U;) < E(Z;) for
any stopping time T < T, and since U; > Z;Vt.
But U ZIE(Uo—i-MT*) ZIE(ZT*). O

We now give a proof of the existence of the minimal super-replicating
strategy. Let U be the Snell envelope of (Y;&;)o<¢<7. Let U = Up +
M — A be its Doob decomposition.

By completeness, there exists a strategy H such that

. Uy + Mt

Xr(H) s

(1.44)

Since XY is a martingale (XY is a local martingale in general but by

19
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completeness all processes are bounded). So

XY = Up + M; (1.45)
> Up+ M — At (1.46)
=U (1.47)
> Yl (1.48)

Thus X; > ¢ forall0 <t < T.
Also, at 7" = inf{t > 0|A;+1 > 0}, we have
XpYor = Up + Mpx = Urr = You (s, (1.49)

and so X = §rx.

Note also that Xo = E(Up + Mr) = Uy = sup,.7 E({cY7).



2

Continuous Time Models

In discrete time, we had Xy — X; 1 = H;- (P — P_1) — ¢t For
continuous time, we replace this with dX; = H;dP; — c;dt
A state price density is some stochastic process Y with ¥; > 0 and

YP is a martingale

Lemma 2.1. If t — X;(w) is differentiable and X is a martingale then X is

constant.

This can make a pricing theory quite boring!

2.1 Diversion into Stochastic Calculus

Definition 2.2. A (standard scalar) Brownian motion is a process

W = (W;)s>0 such that
(i) Wo(w) =0 for all w.
(i) t~— Wi(w) is continuous for all w

(iii) Forany 0 <ty <t < --- < ty, the increments Wy, — Wy, ..., W;, —
W;, , are independent, with Wy — Ws ~ N(O, |t — s|).

Theorem 2.3. The Brownian motion exists (Weiner, 1923).

Consider a filtration (F;) with the property that W; — W; is in-
dependent of F;, 0 < s < t. Our technical assumptions are usual
conditions - F; = NesoFtte (right-continuity), 5y contains all IP-null

sets.



22 ANDREW TULLOCH

Definition 2.4. A simple predictable process is of the form

ar(w) = ) T((tioq, 1)) ai(w), (2.1)

M-

Il
—_

where 0 < ty < --- < ty, each 4; is a bounded F;,  -measurable

random variable.
Remark 2.5. « is left-continuous, piecewise-constant, and adapted.

Definition 2.6.
n

/0 asdWs = Z ai(wti - Wi,‘,1> (2'2)
i=1

where « is a simple predictable process.

Definition 2.7. The predictable o-algebra on [0, 00) x () is generated
by (s,t] x A where A € Fs.

This is the smallest o-algebra for which simple predictable pro-
cesses are measurable.

A process measurable with respect to the predictable o-algebra is

called predictable.
Remark 2.8. If w is left-continuous and adapted, it is predictable.

Proposition 2.9 (It6’s isometry). If « is simple and predictable, then

JE((/;O ade5>2> _ E(/Ooo aﬁds> (2.3)

Thus, the isometry I from simple predictable process to square integrable

random variables on L2(Q), F,P) (which is complete) defined by

I(a) = /0 s d W, (2.4)
Proof.
( / zxdW)z = (Y a,aw;)? (2.5)
=2Y amAW,AW; + Y a? (AW;)? (2.6)
i<
Note that I (& af(AWf)z) =
0

(Finish this proof
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Definition 2.10. Suppose E (fooo(ocls‘ - as)zds) — 0, where each a* is
simple and predictable. Then

/ anWszlim/ aIS‘dWS (2.7)
0 2 Jo

Theorem 2.11. If w is predictable and E ( fot acfds) < oo for all t, there

exists a continuous martingale X such that X; = fooo asI(s < t) dWs.

For notation, we represent X; as fot asdWs. Note that E(X;) = 0
and E(X?) = [; a2ds.
Definition 2.12 (Localization). Suppose « is predictable and fot a2ds <
co almost surely for all t. Let 7, = inf{t > 0| fot asds > n}.

Let ocgn) = all(t < Tn) S0 Otocs(, JdW, is well-defined by the L2
theory, since lE(fO st) < N < ooas fo a2ds < oo almost surely

as T, T oo.
. ¢ t(N)
Notation. [jasdWs as [y a5 dWs on {t < 1,}.

Theorem 2.13. If a is adapted and continuous, then fot wsdWs is defined for
all t > 0 - since t — a(w) is continuous, « is bounded on [0, t] for each w,
and so fot asds < oo almost surely.

If Xy = fo wsdWs, then X is a continuous local martingale, since x(m) =
(Xtnz, )t > 0 is a true martingale, where T, = inf{T > 0, fo asds > N}.

2.2 [td’s Formula

Definition 2.14. An It6 process X is of the form
t t
X, = Xo+ /O wsdWs + /0 Beds (2.8)

such that «, B are predictable and fot asds < oo and fot |Bs|ds < oo for
all t.

Theorem 2.15. If X is an It process and f € C?, then f(X) is an Ito

process. In fact,

f(Xi) = f(Xo) +/ f1(Xs) ades+/ F(Xs)Bs + f”(Xs) ds
_\,_/
[t6’s correction

(2.9)

23



24 ANDREW TULLOCH

Example 2.16. f(x) = x2. Then

t
W2 = / QW AW, + ¢ (2.10)
0
t
E(W7) = ]E(/ 2Wdes> ' (2.11)
0
and the first term is zero as it is a martingale.
This follows from
ot o t2
lE(/ Wszds) = / sds = — < o0 (2.12)
0 0 2

50 fot WsdW; is a martingale.

Theorem 2.17. Let X be an Itd process. Fix t > 0. Then

n 2 ot
”h_r’r"l"zg (Xif — Xt(k;”) = /0 a?ds (2.13)
Notation.
t
(X), = [ wds (2.14)

is called the quadratic variation of X.

Theorem 2.18 (Itd’s formula). In integral form,
f / 1 f 1
FX0) = fXo) + [ FXaXe+5 [ F1(XAX), (@as)
In differential form,
1
df(Xt) = f,(Xt)dXt + Ef//(Xt)d<X>t (2.16)
Morally, the idea is to take Taylor expansion around f(X;).

Theorem 2.19 (Itd’s formula, multidimensional version). let X,Y be

It6 processes. Then the quadratic covariation

n

(X,Y), = lim ) (Xu = X)) (Ya = Yig1)) (2.17)
k:l n n n n
1
= §<X +Y), = (X), = (Y, (2.18)

Proposition 2.20. The quadratic covariance satisfies the following proper-

ties:



(i) (Bilinear, symmetric)
(aX+bY,Z) =a(X,Z) +b{Y,Z) = (Z,aX + bY) (2.19)
(ii) If Xy = Xo + fot Bsds then (X,Y), = 0 for any It6 process Y.

(iii) Let W', W? be two independent Brownian motions. Then (W', W?) =
0.

(iv)

</0t asdWs, /Ot [SdeS> = /Ot s PBsds (2.20)

Let X be an n-dimensional Itd process, and f € C2(R" — R). Then

(2.21)

ADVANCED FINANCIAL MODELS

In finance there are state price densities = equivalent martingale
measures. How to do computations under equivalent changes of
measure?

Let W be an n-dimensional BM with W = (W1,..., W™) where
W' are independent standard Brownian motions. Let a be an n-

dimensional predictable process and fot ||as||?ds < oo, and let
Zr = elo wsdWs—5 fo llas|*ds. (2.22)
Proposition 2.21. Z satisfies the following properties:
(i) Z is a local martingale.
(ii) Z is a supermartingale.

(iii) IfEE(Zr) = 1 for some T > 0 (non-random), then (Zy)o<i<r is a true

martingale.
Proof. Let dX; = a; - dW; — §||at||?dt, Xo = 0. Let f(x) = e*. Then

4z = df(X) = f (X)X + 2 f/(X)d(X),  (223)

25
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Note that
mo et
d(X), =d 2/ a2dW? (2.24)
i=170 '
= dZ</o¢édWsi,/tx£de> (2.25)
i,j t
= Z(ai)zdt (2.26)
= [|as %t (2.27)
Then

1 1
dZt = Zt ((xt . th — 2|(Xt|2dt) + EZtH‘Xszdt = Zt(Xtth. (2.28)

Thus
ot
Zy =1 —1—/ Zsog - AWy (2.29)
0

and so Z is a stochastic integral, and hence a local martingale.

Z; > 0 almost surely, so non-negative local martingales are super-
martingales by Fatou’s lemma.

Z is a supermartingale and E(Z7) = Zj, and so (Z;)p<i<T is a

martingale (pigeonhole principle). O

Theorem 2.22 (Cameron-Martin-Girsanov theorem). Let Zbe as before
and assume E(Zt) = 1for some T > 0. Define an equivalent martingale

measure Q by Radon-Nikodym density

d
# =7 (2.30)

Let Wy = W; — fot asds. Then W is a Q-Brownian motion.

Theorem 2.23 (Martingale representation theorem). Let W be an m-
dimensional Brownian motion generating the filtration (Ft)s>o. Let X
be a continuous local martingale. Then there exists a predictable a with
fot l|as||?ds < oo almost surely for all t such that Xy = Xo + fot asdWs.

If Xi > 0a.s. forall t, then there exists a predictable process B with
fot (| Bs||>ds < oo for all t such that

Xy = Xoefot BsdWs—3 o lIBs|*ds (2.31)

Theorem 2.24 (Levy’s characterization theorem). Let X be a continuous



ADVANCED FINANCIAL MODELS

local martingale (in any filtration satisfying the usual conditions) such that

its quadratic variation (X), = t. Then X is a Brownian motion.

2.3 Arbitrage Theory in Continuous Time
Recall that in discrete time,

Xe=Hi Pt =Hpp1-Pr—cry1 (2:32)

Xip1 = Hip1 - Pp1 = Xp1 — Xe = Hep - (Pen — P) — i1 (233)

The setup is as follows:
(i) P is an m-dimensional Itd process.

Definition 2.25. A self-financing investment/consumption strategy
(H, c) is a pair of predictable processes such that ¢; > 0 forall ¢,
fot Y.(H!)2d(P") >;< oo for all t, and

t t
H, - P, :HO-P0+/O Hs-dps—/o cods (2.34)

Definition 2.26 (Incomplete). An arbitrage is an investment/con-
sumption strategy (H, c) such that Xp = X7 = 0 and lP(fOT csds > 0) >

0 for some non-random T > 0
This definition is flawed.

Example 2.27 (Doubling strategies). Consider the discrete-time model
P = (1,S¢) where Sy = &1 + - - - + Gt where ; are IID with P(; = £1) =
1
2-

Consider a price vector P = (1, W) with W a Brownian motion .
Let X; = fot 1tsdWs, and let f : [0,1] — [0, 0] an increasing bijection

with inverse f~!. For example, f(t) = ﬁ with f~1(u) = 4

Consider

Zy = /Ofl(u) \/ ' (s)dWs (2.35)

Then

fH ()
@)= [ f)ds=u 236)

27



28 ANDREW TULLOCH

which implies Z is a Brownian motion by Levy’s characterization.
Lett =€ {u > 0 : Zu > K} where K > 0Oisa Constant Let
= /f(H)L(t < f1(1)). Note that fO n2ds = ff f'(s)ds =
T < oo. So fo tsdWs makes sense for all t < 1. Let X; = mdW;, with
fo \/f’i dWs = Z: = K > 0. X is a local martingale since
it is a stochastic integral, but E(X;) — K # Xp = 0.

Definition 2.28. An investment/consumption strategy (H,c) is L-
admissible if X;(H,c) > —L; for all t a.s. where L is given non-
negative adapted process.

For most cases, L = 0.

Definition 2.29. A state price density is a positive Itd process such

that (Y;P;);>0 is a local martingale.

Theorem 2.30. If there exists a state price density such that YL is uni-
formly integrable, then there is no arbitrage among L-admissible self-

financing investment/consumption strategies.

Remark 2.31. Recall that (Z;)s>o is uniformly integrable if and only if

Jlim sup E(|Z¢[1(Z>4)) = 0 (2.37)

k—o0 >0

Remark 2.32. If (Z;)o<i<T is a martingale then (Z;)o<i<T is uniformly

integrable (T < oo not random.)

Remark 2.33. If sup;o E(|Z¢|F) < oo for some p > 1 then (Zt)1> is

uniformly integrable.

Remark 2.34. If Z,, — Zo a.s. and (Z,),>1 is Ul then E(|Z, — Zeo|) —
0.

Proposition 2.35. Let (H,c) be a self financing stragey and X; = H; - P
so that dXy = Hy - dPy — cdt. Let Y be an It0 process. Let Y be an It6
process. Then

d(X:Y:) = Hy - (dYPr) — Yicrdt. (2.38)

Proof. Since dX = H - dP — cdt, then

A(X,Y) = ihid@i, Y') (2:39)
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By It6’s formula,

d(XY) =XdY +YdX+d < X, Y > (2.40)
— H-PdY + Y(H - dP — cdt) +2Hid<pf, Yi> (2.41)

— Y H!(P'dY + YdP' + d<p", y>) ~ Yedt (2.42)
= ZHid(PiY) — Ycdt (2.43)
O

Definition 2.36. A continuous, adapted process (Z;);> is of class D

(Doob) if {Z+|T stopping times} is uniformly integrable.
Remark 2.37. If E (supt20 |Zt|) < 0o, then (Z)>0 is of class D.

Theorem 2.38. If YL is of class D (at least locally), then there is no arbi-
trage.

Theorem 2.39. If there exists a state price density Y such that YL is of
class D locally, then there are no L-admissible .

Class D locally means {Z.t - T a stopping time is UIVt > 0}.

Proof.

ot t
/0 H; - d(XsPS) =YXy — YoXo + ‘/0 Yicsds (2.44)

> —Y;Ls — Yo Xo (2.45)

if (H,c) is L-admissible. and from the lemma.

Also, since YP is a local martingale then [ H - d(YP) is a local
martingale (by construction of the Ito integral), so there exists a se-
quence of stopping times T, 1 oo such that ([ H-d(YP))™ is a true

martingale.

29
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Then

T TAT,
E (/O H, - d(Y.Py) + YTLT> _E ( lim /0 H, - d(YsPs) + LTWYTATJ

n—oo
(2.46)
"TAT,
< liminfE ( / HA(YP) + Lrpe, Yras,
n—00 Jo

(2.47)
= li,?l)glfIE(YT/\TnLT/\Tn) (2.48)
=E(YrLy) (2.49)

by Fatau’s lemma (2.47), using that ( fot H -d(YP))™ is a martingale
starting at zero (2.48) and the assumption of uniform integrability

(2.49).
So suppose Xg = 0 = X7 almost surely. Then

]E(/OT Yscsds) = ]E(/OT H; ~d(YSPS)) < 0= c(w)=0ae (2.50)

which implies no arbitrage. O

Suppose P = (N, S) where N; > 0 for all t > 0 almost surely - e.g.

the price of a numeraire.

Definition 2.40. A pure investment strategy H is an arbitrage relative

to the numeraire if and only if

(i) There exists a non-random T > 0 such that

No > Voa.s. (2.51)
and
Xr _ Nr
]P(N0 > No> >0 (2.52)

Remark 2.41. There exists a model P, credit limit L such that there is no

absolute arbitrage but there is a relative arbitrage.

Definition 2.42. An equivalent (local) martingale measure is a mea-

sure Q ~ P such that % is a Q-local martingale.

Theorem 2.43 (FTAP1 for market with a numeraire). Suppose Q is
an EMM and £ is locally class D (with respect to Q), then there are no

L-admissible relative arbitrages.

)

(To show
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Lemma 2.44. If Xy = ¢:N;y + 714 - St (i.e (¢, 71) is a self-financing pure
investment strategy), then

dé = ﬂtdi

N N (253)

Proof. Ito’s lemma O

Proof (Proof of theorem). If Q is an EMM, X is a Q-local martingale,
since it is the stochastic integral with respect to the Q-local mar-

tingale % As X‘NLth > 0, we can apply Fatau’s lemma as before,

obtaining
X7 Xo
— ) < —. .
]EQ(NT> ~ Nop (2.54)
Thus, if
Xr _ X
20 5 20 .
Nt = No (2.55)
P a.s. then
Xr _ Xp
2 s Y .56
Nr = Ny (2.56)

Q a.s by equivalence of IP and Q.
Then f\% = ﬁ—g Q a.s. by the pigeon hole, then XJT" = l)\% IP a.s, since
P~ Q. O

(Fill in rest of lecture content J

In the framework P = (B, S), dB; = Byrdt, dSi = Si(yidt +
i1 otide{).

Theorem 2.45. Let A be predictable and fot | As||?ds < 0as. Vt > 0and
satisfying oiAy = py = rv. Then dYy = =Y (ridt + ArdWy) is a state price
density and if W generates the filtration then all state price densities are of

this form. A is called a market price of risk.

Proof. From 1t6’s formula,
d(Y;Bi) = —YiBiA; - dW, (2:57)

is a local martingale,
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d(Y:S}) = YiSi(pi + Y odWI) + YS! (—rdt — Y VdW) — YS' Y i dt
(2.58)
d(YS)) = YS (01 = \)dW + (u —r — (cA)'dt)) (2.59)

Now, if the filtration is generated by W, then all positive local
martingales M are of the form (by the martingale representation
theorem) dM = —MA - dW for some predictable process A. So if Y is
a state price density then Y is of the form Y = % sodY = =Y(rdt =
AdW). If YS! is a local martingale for all i then ¢A = u — r1 in order
for the dt to cancel in It6’s formula. O

If Y is a state price density such that YB is a true martingale, we

can define an equivalent measure Q by % = {%gg for some fixed

T > 0. This Q is an equivalent martingale measure.

Theorem 2.46. Suppose AM; = —M; Ay - AW is a true martingale where A
solves oA = p —rl. Fix T > 0 and let ‘;% = 11\\/[75 Then Q is an EMM and
dSi = Si(ridt + o'1dWy) for a Q-Brownian motion W.

Proof. By Girsanov’s theorem, Wy = W, + fot Agds is a Q-Brownian

motion. Now, by It6,

d(%) - %((;ﬂ — r)dt + GIdW) (2.60)
-
= %U”(/\tdt + dW;) (2.61)
i RN
= %a”dw. (2.62)
0

Theorem 2.47. Suppose that the filtration is generated by W. Suppose

n = d and that the d x d matrix ¢l (w) is invertible for all t,w. Let \; =
Utij(yt —ril) and dYy = —Yi(ridt + AedWy) is the unique state price
density. Let CT be a Fy-measurable non-negative random variable such that
CrYT is integrable. Then there exists a 0-admissible trading strategy H such
that X%’ = Crand Xgl = HY+§”.

Furthermore, if LY is locally of class D and H is an L-admissible strategy

such that Xr(F) = &r, then Xo(F) > Xo(H). That is, "0T) is the



minimal replication cost of the European claim with payout ¢r.

Proof. Let My = EE(Yr&r|F:). This is a martingale. We show that there
exists H such that XtH = %ffor all0 < t < T. By the martingale
representation theorem, there exists a d-dimensional predictable

process « such that

dM; = adWy (2.63)
By It6’s formula,
A
Yt Yt Yt

Let 7t = diag(St) (o )~ (M45*%) and

=T (265)

Note that ¢:B; + S = %t, and

Mt)\t +

M
Y, @AW Al =d(3)  (266)

M
mdBy + Sy = Ttrdt +
t

and so H = (¢, ) is a self-financing strategy. It is o-admissible since

%f>0. O

Theorem 2.48. If H is L-admissible and LY is in class D and Xr(H) = &1
then

. E(Y
Xo(A1) > EOIEE) = (a1 (267)
Proof. Consider
*Yt(f(t + Lt) >0 (2.68)
and Y; X; is a local martingale.
E(Yrag, LtaL,) = E(Y7LT) (2.69)

by uniform integrability assumption. Therefore YXis a supermartin-

gale by Fatau’s lemma, and thus

]E(YTgT) = IE(YTXT) < Y()XO (2.70)

ADVANCED FINANCIAL MODELS
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Example 2.49. A market model with no absolute arbitrage but with a
relative arbitrage.

Consider P = (1,S), where dS; = SyovdWi, n = d = 1, 03 > 0 for
all t. On the filtration generated by W and S is a strictly local martingale,
E(ST) < So (recall that all positive local martingales are supermartingales)

which implies E(maxXo<;<T St) = o0.

Definition 2.50. Let Y; = 1 for all ¢ be a state price density. If L is of

class D locally, there exist L-admissible absolute arbitrages.

Definition 2.51. Let Q = IP. This is an EMM for the cash numeraire.

If L is of class D locally, there are no relative arbitrages.

Definition 2.52. By existential replication theorem, there exists H

such that X1 (H) = St. Notice that Xo(H) = E(Xr1) < So (1)
Note that ?—; = las. but ?—g = p < 1 (so we have a relative

N 0
arbitrage). Let H =H —p ( ) . Then
1

Xo(I:I) = IE(ST) - PSO =0 (2.71)
Xr(H) =St —pSt >0 (2.72)

X¢(H) is not of class D. So only admissible if L is wild.



3
Black-Scholes

Consider the market model

dB; = Byrdt (3.1)
dS; = St(ydt + O'th) (3.2)

Then B; = Bye't, S; = soe(ﬂf%fwwr, and Y; = e~ (r=A?2)t=AW: jg
the unique state price density with Yy = 1, where A = =7
Our goal is to replicate a European claim with payout ¢t = ¢(St)
where ¢ > 0 and suitably integrable. By our replication theo-
rem, there exists a o-admissible strategy H such that X;(H) =
T E(Yrg(St)|F?)-
AT

Let Zl% = ¢~ "z~ be the unique EMM. By the Cameron-Martin-

Girsanov theorem, W; = W; + At is a Q-Brownian motion. Then

Sp = §ye(n=2) (T +o(Wr—W) (3.3)
— 56l T2 (Tt ko (- (3.4)
and we have
X; = e "T-DEQ(¢(S7)|F) (3-5)
_ /g(ste(r—‘f)(T—f)+UmZ)i/;dz (3.6)

Substituting in g(x) = (x — K)* corresponding to a call option, we
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obtain the price

—1og55 r o
Ci(T,K) = §;®(—=—L —+ VT —t
t( ) t (U\/T_—t+(0'+2) )
K

_ Ke*T(Tft)q)( B log S_t

v el

WT —t) (3.7)

|
TR

r
g

3.1 Black-Scholes Volatility

Assume we observe (S;)_r<;<o at some discrete intervals (£ — 1)T

fori=0,...,n, with

St
Y; = log ¢ f (3.8)
tiq
o2
= (‘u - 7)(tl - ti*l) + U(Wti - th;l) (39)
T 0T
~ N —_ — ). .
(as, ") (3:10)
The MLE is then
1 1 So
i—= — Y, = —log —— .
a T;‘; i= 7T og S, (3.11)
1 & aT
A2 - _wr
?=F L= (3.12)
and V(6?) = 2%4 — 0asn — oco.
3.2 Calibration
Black-Scholes model prediction, a call price
Ci(T,K) = CB(t, T,K, Sy, 1, 0). (3-13)

The Black-Scholes implied volatility for strike K, maturity T at time ¢
is the unique ¢ which solves (3.13), denoted Y, (T, K).
Black-Scholes predicts there is a unique number ¢ such that

Y.+(T,K) = o for all t, T, K. This fails in most markets.
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3.3 Robustness

Consider a payout of claim g(St). Assume we believe in Black-

Scholes, and so we believe the price

v(0,5,0) (3.14)

where

2

V(t,8,0) = e "(T0) [ g(selr=F)T-0+0vT-i) € 2 4 .
(t,5,0) = "7 [ g(se e

for some ¢. Pick ¢ to solve V (0, Sy, ) = &, the initial price of the
claim.

Now, try to replicate the claim with portfolio (¢, 7r) with

aV .
T = %(tl S,U') (316)
Xy — mS
¢t = % (3-17)
t
Notice the equation
Xo = V(0,50,0) (3-18)
dX; = r(Xy — mSy)dt + mrpds (3.19)
has a unique solution given by
t
X = Xoe't + e’t/ tsd (7% Ss) (3.20)
0
so given 71, we can solve for X.
In the real model,
dB; = rB:dt (3-21)
dS;y = S¢(pdt + ordWy) (3.22)

for r, y constant but o; a stochastic process.
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Then
oV 1% 102V
Av(t, S, 0) = ﬁd 35 ==dS+ - 5382 ——4d(S) (3.23)
oV 19%V 252
= (g + = 2 %S o7 Sy)dt + mdSy (3.24)
1% 1&>2v22 1aV22
(T’V— Sas 28525 +§852 S)dt—i—mdst
(3-25)
and so
. 1., %
d(X; —V(t,5,0)) =r(X = V)dt + ES (62 — 07) = 532 dt (3.26)
and so
XT—V(T,ST,@')—X0+V(O,So,@') :XT—g(ST) (3 27)
*V
r(T—s) 2 vy
2 / S3(0° — ) s
(3.28)

and so we can estimate the difference between the option and the
replicating portfolio by a weighted average of the gamma multiplied
by the difference in implied and realized volatility over the time

period.



4
Local Volatility Models

Consider

dBy = rBdt (4.1)
ds; = St(}l(f, St)dt+0'(t, St)th) (4-2)
= Sy(rdt + o (t,S;)dW;) (4.3)

with dW; = dW, + £ ((Ttéfts)t;rd t is a Brownian motion under the equiva-

lent martingale measure Q.

Theorem 4.1 (Dupire). Suppose Co(T,K) = Eq(e "7 (St — K)*). Then

9C 9Cy o(T,K)? ,3°Cy
— +rK— = K — .
oT TNk 2 K2 (4-4)
with Cy(0,K) = (Sg — K)Jr with
2(%L0 4 k%)
o(T,K) = J % (4.5)
oK?
Exercise 4.2. If
Co(T,K) = CBS(t=0,0,T, Sy, K, 7,00) (4.6)
show that
o(T,K) =0y (4-7)

forall T, K.
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Lemma 4.3 (Breden-Litzenberger, 1978). Suppose St has density f
(under Q). Then

Co(T,K) = [~ fs, )y — Koy 48)
aC 0
=" /K fsr(y)dy (4-9)
9°C
WZO = e Tfs (K) (4.10)

Proof (Proof of Theorem 4.1). By Itd’s formula,

(Sr— K+) = (So — K)* +/T11(st > K) dS, +1/T5Kd<s> (4.11)
0 - 2 Jo

T
= (So—K)" + [ Sil(s = K) + 2 S20(t,51)%6 ()t +
0 0
(4-12)

Taking EQ on both sides, we obtain

¢TCo(T,K) = (So —K)* + /OT (/: fs, (y)yrdy> dt
1 T
+ E/o fs,(K)K?o(t,K)?dt  (4.13)

which gives

0C 0 1
T retCy = [ foy vy + s (KIKO(T R (1)

Writing y = (y — K) + K and applying the previous lemma, we

obtain the required result. O

Remark 4.4. Given a call surface {Co(T,K), T,K > 0} where Co(T,-) is
smooth, we find the density of St by

PCo _ oyt
K2 ¢ " fs, (K) (4.15)

and hence

©  22C
EQ(e"Tg(S7)) = /0 g(}/)yzo(ﬂy)dy (4.16)

T ~
St(f(t, St)]I(St 2 K) th



If g is convex and smooth, then

g(St) = g(a) + —a+/g )(K — sT+d1<+/
(4.17)
= Y ¢"(K)(Ki — S1)TAK: + Y g"(Ki) (St — Ki)AK; (4.18)
Ki<a Ki>a

4.1 Computing Moment Generating Functions

Consider a model with By = Bye'T, S positive such that (e_’TSt)tZO is
a Q-martingale.

Consider
O={p+qil0<p<igeR}CC (4.19)

withi = /1.
Let M;(8) = EQe?1985 be the moment generating function of log
St, with8 =p+ig,0 < p <1, and so

EQ|e?1085 | = EQ(S]) < (EQS)P = (¢"Sp)" < o0 (4.20)

and so M;(6) is well defined for 6 € ©.

Theorem 4.5.
—1Tgl-p (oo M (p + ix)efiXIOgK
EQ(e—'T —KH = ¢ / L d
@ ST=K) =%~ — | oo™
(4.21)
forall0 < p < 1.
Theorem 4.6.
TP ©  Mr(p+ ix)e*"xlogK
Co(T,K) = Sy / - - dx (4.22)
(T,K) 2 oo (x —ip)(x+i(1—p))
Lemma 4.7.
1 /oo e*lax (1 ) e 7 a=>0 ( )
27t o x —ip a"=p) 5 <0

which can be shown via contour integration.
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Let «yR be the semi-circle of radius R above the x-axis in the complex

plane. Then
/- eiax ap
- - dx =27t Res = 2te™"F. (4.24)
e (x —ip)(x +i(1—p)) x=ip
and we have
gi1(Rcos p-+ising) e—Rsin¢
dp < 7 —0 (4.25)
R

R T (
/,R + /4;:0 (Re'® —ip)(Re'® +i(1—p))

and so we obtain our required result.

Proof (Proof of 4.6). We have

e—rT(ST _ K)+ — e—rTST
oo pplogSy+ixlog Sy—ixlog K

Kl=pe—rT
o L» (x—ip)(x+i(1—p)) dx  (4.26)

Now computing EQ, using Fubini’s theorem to justify the inter-

change as
g(P+ix) log St—ixlog K 1
E . . dx | =M o
</ (x—ip)(x+i(1—p)) x) r(p) / V)2 E (1 p)?) <
(4-27)
O

Remark 4.8. By Holder’s inequality, p — log Mr(p) = Ar(p) is convex.
A7(0) = 0,A7(1) = logSo+rT, and p — Ar(p) is smooth. It has a
minimal point p = p* € (0,1) at

* i\ o * Trx [ 1 " *\ (7a\2
Ar(p* +ix) = Ar(p") + Ar(p")(ix) +5 A (p)(x)7 (4.28)

> 0 by convexity

(4.29)

by Taylor’s theorem.



Then
Mﬂp*—l—ix)e‘”‘logl( . e—A/T/(p*)x2
i ; ~ M e
| et = M) [ Sa=p
_ Mz (p*) 2r

p(1=p)\| AL(p*)
4.2 The Heston Model
dBt = Bti’di'

dS; = St(rdt + 4/ vtthS)

doy = )\(5 — Z)t)df + c\/deWtV

(4.30)

(431)

(4-32)
(4-33)
(4-34)

WS, W? are Brownian motions under some EMM Q, with correla-
tion p. For instance, WY = pW; + /1 — p2d;- with W*, W= indepen-

dent.

v > 0 is the mean-reversion level. A > 0 is the mean reversion rate.

We have v; > 0 almost surely [Cox et al., 1985].

Our goal is fix T > 0,0 € ©, want to compute E (ee log ST).

Idea: Let (V(t,St, vt))o<t<T be chosen so that it is a martingale

with V(T, St, V1) = €?1°85T. The moment generating function is then

V(t =0,Sp,vg)-

By Ito,
av(t,Stp,) = aa—‘:dt + g—‘S]dS + %%d(S) + %—‘;dv + %%
We seek to make the dt terms vanish. Thus,
%/ + aa—‘S/rS + %%S2v+ aa—:)x(ﬁf v) + %az%c2v+ aasz—avv
The inspired idea is to look for solutions of the form
V(t,,0) = et 108 S+R(T-Hv+Q(T—1)

with R(0) = Q(0) = 0.

d{v) +

2V

000s d

(4-35)

pSvc = 0.

(4.36)

(4-37)
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Substituting this functional form in, we obtain

1 1
R'v = Q' +710+ 20(0 —1)o+ RA(T —v) + S R*%?0 + 6Rpve = 0
(4-38)

Collecting terms, we have

R =10(0—1)+ sR%2 + (8pc — A)R
(439)
Q' =10 = RAT

which are Riccati equations, which have an explicit solution.

4.3 American Options (Guest Lecture)

Suppose we have some assets d and our bank account B;. The ran-

dom assets evolve as

ds;Si (uydt + im-j(t, St)dW)) (4-40)
j=

The option we want to price pays g(S¢) if exercised at time 7. The
exercise time T must be a stopping time, with 7 < T, the expiration
time.

For technical reasons, suppose g is bounded. For examples sake,
we assume we have one sock, and consider an American put g(S) =
(K—=9)".

If there are d assets, we might have a min-put, we have

= (K — . i+ K_i+ .
g(8) = ( @lgds ) g@( S') (4.41)

To solve this pricing problem, write

_1 af
f—E;SIS]aU(t S) as as +erlas BT (4.42)

where a = 007, and suppose we can find some V(t,S) € C12 such

that

max{LV,g -V} =0,V(T,) = g(:). (4-43)



Then

V(0,S9) = supE(e"""g(St)|So) (4-44)

<<T

Why is this true? Consider
d(V(t,S¢)e ™) = Vi(t,St)SsordW; + LV (t, Sy)dt (4.45)

If we let T be any stopping time < T, and we let T 1 oo be a
sequence of stopping times “rediscovering” the local martingale
Vs(t,S)SodW, and we shall then have

V(0,S0) = E (ErT”V(Tn,STH) - /0 "LV (n, Su)du) (4.46)
> E(e”"™V(tu, Sx,)) (4-47)
> E(e "™g(S,)) - (4-48)
since LV < 0.

If we let n — oo, T, T T, we must have that

V(0,50) > sup E(e ""g(Sr)). (4-49)
0<t<T

To show that there is equality, consider

= inf{t{V(t,5;) = g(S1)} (4.50)

We know that V(T,-) = g(-), and so ™ < T. We also notice that in
[0,7), LV = 0 because in [0,7), g — V < 0, and max{LV,g—V} = 0.

Now going back to the first calculation, if we write 7y = T A Tj,.
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x T
V(0,S9) =E (e”" V(ty,Ser) — / ﬁV(u,Su)du> (4.51)
0
=E(e7"™V(t,Sq,)) (4.52)
= lE(ew*v(r*, Se) 1T < Tn) +]E<e”T”V(Tn,STn) TN > Tn)
(4-53)
_ lE(e_rr*g(ST*)h* < Tn) +lE(e‘rT"V(Tn,STH) LT > Tn>
(4-54)
—E(e7g(5e)). (4-55)
n We need to show that the V we found is bounded.
Example 4.9. American puts in one dimension.
We have an envelope V.
We find V by solving
1
0=—-rV= 2 252Vss + rSVs (4-56)
for S = q with boundary condition
V(g) = (K—q)" (4-57)
This we can write as
V(S) = AS + BS~2/7 (4.58)

with the boundary condition V(q) = (K —q)™.
Suppose we let q be a parameter of the stopping rule, work out the value

and optimize over q. The value is

S. 2 _ oo
V(§) = (K- q)(ﬁ) @ =5 2q7(K—q) (4-59)
Optimizing over q, we have
2r 1 2rk
2 K—q 1T 212 (4.60)
We can check, if we use this value of q, then V'(q) = —1 = Z(K —

S)|s=g-
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It can be shown that supy 7 E(e7""g(Sr)) < minpiep, E(sup ) _l‘—






5
Bond Markets and Interest Rates

Definition 5.1. A zero coupon bond is a contingent claim that pays
exactly one unit of money at maturity.
We assume that ¢, the payment of the bond, is 1 a.s. - that is,

there is no credit risk.

Definition 5.2. P(t, T)is the price at time ¢ for a bond maturing at

time T.

Definition 5.3. The yield y(t, T) is defined as

y(t, T)=— log P(t,T) (5.1)

T—t
or equivalently

P(t,T) = e~(T-D(LT) (5.2)

Definition 5.4. We call limr; y(t, T) = r; the “spot” or “short” rate.
We call limryo, y(t, T) if it exists.

Definition 5.5. The forward rate f(t,T) is defined
(,T) = - log P(t,T) (53)
ft,T)= 57 log P(, 5.3
or equivalently
T
P(,T) = = [ f(t,u)du (5.4)

Theorem 5.6. There is no arbitrage in the market prices (P(t, Ty), P(t, T2), ..., P(t, Ty))

if YeP(t, T)sc(o,1) is a local martingale for all T, where Y is a state price
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density.*

In particular, there is no arbitrage if P(t, T) = LE(Y7|F)

t

Introduce the bank account dB; = Byrydt <= B; = Boefot rsds

where r is the short rate. Define an equivalent martingale measure

with density ‘;% = Bg)g Rewrite
1 (T
P(t, T) = BtIEQ <B—|ft> = ]EQ (e ft rsdslft) (55)
T
By the law of one price,

£, T) = — - logEq (¢ 4| 7)) (56)
B ]EQ (rTe_ ftTrst|.7:t)
- Eq(e h ey

(5.7)

and so f(t,T) can be seen as the “market weighted conditional expec-
tation of rr given at F;.”

Alternatively, we have
T
Eq((£(t,T) = rr)e” I ™| ) = 0 (58)

and so the forward rate is such that the claim with payout f(t,T) —rr

has price o at time T.

' Recall relative arbitrage, admissible
class D, etc.

There are two approaches to bond market pricing:
(i) Let (r¢)¢>0 be fundamental, derive everything else: f(t, T), etc.

(i) Model (f(t, T))o<t<t directly - the Heath et al. [1992] approach.

5.1 The Heath et al. [1992] Model

Theorem 5.7. Suppose df(t,T) = a(t, T)dt + o (t, T) - dW; for a d-
dimensional Brownian motion W where o(t, T) is suitably measurable and

integrable, and

T
a(t,T) =o(t,T) - /t o(t,u)du (5.9)
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Define ry = f(t,t) and P(t,T) = e~ S Fadn Tpey

t
(67 b PG, T))0<t<T (5.10)
is a local martingale.
Remark 5.8.
t t )
£(5,T) = £(0,T) + / a(s, T)ds + / o(s, T) - dW. (5.11)
0 0
Proof. Recall that if dlog M; = —@dt + by - dW;, then M is a local

1 t 2 Ly A
martingale if and only if M; = Mye 12} Jo [bsfdst fo bed W

By differentiation, we have

d < /Ot rods — ./t.Tf(t,u)du> = —rdt + f(t, )t — '/tTdf(t,u)du

(5.12)
T T R
= —(/ a(t,u)du)dt — (/ o(t,u)du) - dW;.
t t
(5.13)
noting that
T 1 T
[ attwydu= 3| [ ot uydul? (5.14)
t t
gives the required result. O

Example 5.9 (Ho and Lee [1986]). Assume d =1, o(t,T) = oy constant.
Then

AF(t,T) = (T — £)oB)dt + oWy (5.15)
f(t, T)=f(0,T)+ /Ot(T — s)ogds + opdW; (5.16)
re = f(0,t) + %0’31‘2 + oo Wi (5.17)

Example 5.10 (Hull and White [1990]). Again, assumed =1, 0(t,T) =

e MT=D),

df(t,T) = oge M T=H(1 - e MT=DYdt + gpeMT=D W, (5.18)

! 2
dri = A (fo)(\t) + fo(t) + 2‘%(1 —e M) — rt> + 0pdW;.  (5.19)

51
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Example 5.11 (Kennedy [1997]). This is a Gaussian random field model.

Suppose o (t, T) is not random, so

F(ET) = £(0,T) + /O " a(s, T)ds + /O ‘o(s, T)AW,  (5.20)

is Gaussian. Then
Bo(f(1,T) = FO.1) + [[als,Tids (520
Cou(f(s,S), f(, T)) = /0 Mo S) c(u Tydu  (522)

Turning this around, we can model

(f(; T))osr<t (5-23)
as a Gaussian random field with
Cov(f(s,5), f(£,T)) = cspe(S,T) (5-24)
T
E(f(T) = fOT) + [ conls s, (5.25)

and thus there is no need to introduce a Brownian motion. For instance,

a(f(t,S), f(t,T)) =0o(t,S)-o(t, T)dt (5.26)

= gpe PIT=S! (5.27)

and so we have an exponentially decaying correlation between forward rates

of different maturities.

Example 5.12. The HJM equation

df(t,T) =a(t, T)dt+o(t, T)dW; (5.28)

T=t+x fi(x)=f(t,t+x) (5.29)
dfi(x) = (% + a(x))dt + o (x)dW; (5.30)

Fix a separable Hilbert space F = {f : Ry — R}. Then (dropping the

x),

dfi = (Afi + a;) dt + odW; (5.31)



can be interpreted as an evolution equation in this function space. In the
simplest case, 0 is a constant vector F @ ]Rd, w; 1S a constant vector in F,
then (fi)s>o is an F-valued Ornstein-Uhlenbeck process.

We can apply techniques from statistics (e.g. PCA) if this model has an

invariant measure — shown in early 2000’s.
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