
COMP 2907 - ALGORITHMS AND COMPLEXITY

ANDREW TULLOCH AND GILES GARDAM

Contents

1. Introduction 2

1.1. Graphs 2

2. Greedy Algorithm 3

2.1. Interval scheduling 3

2.2. Interval Partitioning 4

2.3. Some simple greedy algorithms 4

2.4. Dijkstra’s algorithm 4

2.5. Minimum spanning trees 5

3. Divide & Conquer 7

3.1. Closest pair of points 8

3.2. Multiplication 8

4. Dynamic Programming 8

4.1. Weighted interval scheduling 8

4.2. Segmented least squares 9

4.3. Knapsack problem 9

4.4. RNA secondary structure 10

4.5. Sequence alignment 10

4.6. The Bellman-Ford algorithm for shortest paths 11

4.7. Negative cycles in a graph 11

5. Network Flow 11

5.1. Bipartite matching 14

5.2. Disjoint paths 15

5.3. Circulation with demands and lower bounds 15

5.4. Survey design 16

5.5. Project selection 16

6. Reductions 17

7. Complexity 18

7.1. NP-Completeness 19
1

COMP 2907 - ALGORITHMS AND COMPLEXITY 2

7.2. co-NP and the Asymmetry of NP 20

8. Dealing with Intractability 20

8.1. Vertex Cover 20

8.2. Independent set on trees 21

8.3. Weighted independent set on trees 21

9. Randomized and approximation algorithms 22

9.1. Probability results 22

9.2. Randomized algorithm for global minimum cut 22

9.3. Approximation algorithm for makespan scheduling 23

9.4. Randomized algorithm for max-3-sat 23

9.5. Randomized algorithm for database access 24

9.6. Approximation algorithm for the travelling salesman problem 24

9.7. Some NP-complete problems 24

COMP 2907 - ALGORITHMS AND COMPLEXITY 3

1. Introduction

Algorithm 1.1 Propose-and-reject algorithm for the stable matching problem

1: procedure StableMatching(M,W)

2: while some man is free and hasn’t proposed to every woman do

3: Choose such a man m

4: w ← first woman on m’s list to whom m has not yet proposed

5: if w is free then

6: assign m and w to be engaged

7: else if w preferms m to her fiance m′ then

8: assign m and w to be engaged, and m′ to be free

9: else

10: w rejects m

11: end if

12: end while

13: end procedure

Theorem 1.1. The Gale-Shapley algorithm yields a stable matching in O(n2) time. The matching

it returns is man-optimal (all men simultaneously get matched to the best possible woman over all

stable matchings), and is hence independent of the order in which free men are chosen to propose.

Definition 1.2 (Efficieny). An algorithm is efficient if its worst-case running time is polynomial.

Definition 1.3 (O, Θ, Ω). We have the following bounds on the running time of an algorithm

T (n).

• T (n) is O(f(n)) if there exists c > 0 such that T (n) ≤ cf(n) for n sufficiently large.

• T (n) is Ωf(n) if there exists c > 0 such that T (n) ≥ cf(n) for n sufficiently large.

• T (n) is Θ(f(n)) if it is both O(f(n)) and Ω(f(n)).

1.1. Graphs.

Definition 1.4 (Adjacency list). An adjacency list is a node indexed array of lists. It contains

two representations of each edge. Checking if (u, v) is an edge takes O(deg u) time, identifying all

edges and space used are both O(n+m). (Convention is that a graph has n vertices and m edges.)

Theorem 1.5 (Trees). An undirected graph is a tree if it is connected and does not contain a

cycle.

Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

• G is connected.

COMP 2907 - ALGORITHMS AND COMPLEXITY 4

• G does not contain a cycle.

• G has n− 1 edges.

Theorem 1.6 (bfs algorithm). Explore outward from s in all possible directions, adding nodes one

“layer” at a time.

• L0 = {s}
• Li = all nodes that do not belong to an earlier layer, and that have an edge to a node in

Li−1.

Theorem 1.7. bfs runs in O(m+ n) time if the graph is given by its adjacency representation.

Definition 1.8 (Bipartite graph). A graph is bipartite if the nodes can be coloured red and blue

such that every edge has one red and one blue end.

Theorem 1.9. A graph is bipartite if and only if it does not contain an odd length cycle.

Definition 1.10 (Strongly connected). A (directed) graph is strongly connected if for every pair of

nodes (u, v), there is a path from u to v and a path from v to u. Can be tested by bfs in O(m+n)

time (exanding along ‘forward’ edges in one pass and then along ‘backward’ edges in the other).

Definition 1.11 (Directed acyclic graph). A directed acyclic graph is a directed graph that contains

no directed cycles.

Lemma 1.12. A topological order is total ordering such that if an edge joins u to v then u < v. G

has a topological order if and only if G is a directed acyclic graph.

2. Greedy Algorithm

Algorithm 2.1 Greedy algorithm for interval scheduling P

1: procedure IntervalScheduling(J)

2: Sort jobs by finish times so that f1 ≤ f2 ≤ · · · ≤ fn.

3: A← ∅
4: for j = 1 to n do

5: if job j compatible with A then

6: A← A ∪ {j}
7: end if

8: end for

9: return A

10: end procedure

2.1. Interval scheduling.

Theorem 2.1. IntervalScheduling runs in O(n log n) time.

COMP 2907 - ALGORITHMS AND COMPLEXITY 5

Algorithm 2.2 Greedy algorithm for interval partitioning

1: procedure IntervalPartitioning(J)

2: Sort intervals by starting times so that s1 ≤ s2 ≤ · · · ≤ sn.

3: d← 0

4: for j = 1 to n do

5: if lecture j compatible with some classroom k then

6: schedule lecture j in classroom k

7: else

8: allocate a new classroom d+ 1

9: schedule lecture j in classroom d+ 1

10: d← d+ 1

11: end if

12: end for

13: end procedure

2.2. Interval Partitioning.

2.3. Some simple greedy algorithms.

• For jobs with fixed deadlines and durations to be scheduled on one machine, we can minimize

the maximum lateness going by earliest deadline first.

• For optimal caching, we evict the item that is requested farthest in the future.

• To minimize the number of fuel stops, the truck driver’s algorithm chooses the furthest

possible stop at each step.

• To find the best k-clustering, i.e. partition of nodes into k sets which maximizes the

minimum distance between nodes in different clusters, we can apply Kruskal’s algorithm,

ending when there are k connected compnents.

2.4. Dijkstra’s algorithm. Given a directed graph G = (V,E) with non-negative edge weights,

finds the shortest path from a node s to a target node t (or any arbitrary node).

• Maintain a set of explored nodes S for which we have determined the shortest path

distance d(u) from s to u.

• Initialise S = {s}, d(s) = 0.

• Repeatedly choose unexplored node v which minimises

π(v) = min
(u,v):u∈S

d(u) + wuv,

add v to S, and set d(v) = π(v).

Theorem 2.2. dijkstra runs in O(m log n) with a binary heap.

COMP 2907 - ALGORITHMS AND COMPLEXITY 6

2.5. Minimum spanning trees.

Definition 2.3 (Minimum spanning tree). Given a connected graph G = (V,E) with real-valued

edge weights wuv, an mst is a subset of the edges T ⊆ E such that T is a spanning tree whose sum

of edge weights is minimised.

Theorem 2.4 (Kruskal’s algorithm). Start with T = ∅. Consider edges in ascending order of cost.

Insert edge e in T unless doing so would create a cycle.

Theorem 2.5 (Reverse-Delete algorithm). Start with T = E. Consider edges in descending order

of cost. Delete edge e from T unless doing so would disconnect T .

Theorem 2.6 (Prim’s algorithm). Start with some root node s and greedily grow a tree from s

outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T .

Proposition 2.7 (Cut property). Let S be any subset of nodes, and let e be the minimum cost

edge with exactly one endpoint in S. Then the mst contains e.

Proof. Assume the contrary. Adding e creates a cycle. Some other edge on the cut is more expensive

than e, and removing it leaves a cheaper spanning tree. �

Proposition 2.8 (Cycle property). Let C be any cycle, and let f be the maximum cost edge

belonging to C. Then the mst does not contain f .

Proof. Assume the contrary. Removing f leaves two connected components, with one end of f in

each. Some other edge in the cycle is on the cut, and adding it gives us a cheaper spanning tree. �

COMP 2907 - ALGORITHMS AND COMPLEXITY 7

Algorithm 2.3 Prim’s algorithm for minimal spanning tree

1: procedure Prim(G, c)

2: for all v ∈ V do a[v]←∞
3: end for

4: Initialise an empty priority queue Q

5: for all v ∈ V do Insert v onto Q

6: end for

7: Initialise a set of explored nodes S ← ϕ

8: while Q is not empty do

9: u← delete minimum element from Q.

10: S ← S ∪ {u}
11: for all edges e = (u, v) incident to u do

12: if v /∈ S and ce < a[v] then

13: decrease priority a[v] to ce

14: end if

15: end for

16: end while

17: end procedure

Theorem 2.9. Prim runs in O(n2) with an array, O(m log n) with a binary heap.

Algorithm 2.4 Kruskal’s algorithm for minimal spanning tree

1: procedure Kruskal(G, c)

2: Sort edge weights so that c1 ≤ c2 ≤ · · · ≤ cm.

3: T ← ϕ

4: for all u ∈ V do make a set containing singleton u.

5: end for

6: for i = 1 to m do

7: (u, v) = ei

8: if u and v are in different sets then

9: T ← T ∪ {ei}
10: merge the sets containing u and v

11: end if

12: end for

13: return T

14: end procedure

COMP 2907 - ALGORITHMS AND COMPLEXITY 8

3. Divide & Conquer

Theorem 3.1 (Master theorem). If T (n) ≤ aT (n/b) +O(nd), then

T (n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd

Algorithm 3.1 Counting inversions

1: procedure SortAndCount(L)

2: if list L has one element then

3: return 0 and the list L

4: end if

5: Divide L into two halves A and B

6: (rA, A)← SortAndCount(A)

7: (rB , A)← SortAndCount(B)

8: (r, L)←MergeAndCount(A,B)

9:

10: return r = rA + rB + r and the sorted list L

11: end procedure

Algorithm 3.2 Finding the closest pair of points in a plane

1: procedure ClosestPair(L)

2: Compute separation line X such that half the points are on one side and half on the other

side.

3:

4: δ1 = ClosestPair(left half)

5: δ2 = ClosestPair(right half)

6: δ = min(δ1, δ2)

7:

8: Delete all points further than δ from separation line X

9: Sort remaining points by y-coordinate

10: Scan points in y order and compare distance between each point and next 11 neighbours.

If any of these distances is less than δ, update δ

11:

12: return δ

13: end procedure

COMP 2907 - ALGORITHMS AND COMPLEXITY 9

3.1. Closest pair of points.

Theorem 3.2. Running time is T (n) ≤ 2T (n/2) +O(n log n)⇒ T (n) = O(n log2 n)

Remark. Can be improved to run in O(n log n) by pre-sorting and merging lists.

3.2. Multiplication.

Theorem 3.3. We can multiply two n-bit integers in O(nlog2 3) bit operations.

Remark. This is achieved recursively, putting x = 2n/2x1 + x0, y = 2n/2y1 + y0 and computing

xy = 2nx1y1 + 2n/2 ((x1 + x0)(y1 + y0)− x1y1 − x0y0)) + x0y0, so that the expensive computation

is computing 3 multiplications of two order n/2 integers; the shifts and additions take linear time.

Note that log2 3 = 1.58496...

Theorem 3.4. Naive matrix multiplication is O(n3). Can be improved to O(n2.81) by Strassen,

and has been improved to O(n2.376) by Coppersmith-Winograd.

4. Dynamic Programming

4.1. Weighted interval scheduling. The following algorithm solves the weighted interval sched-

uling problem. The jobs must be sorted in ascending order by finishing time. We use the recurrence

f(j) =

0 if j = 0

max{vj + f(p(j)), f(j − 1)} otherwise

where p(j) is the largest index i < j such that job i is compatible with job j, 0 if there is no such i.

COMP 2907 - ALGORITHMS AND COMPLEXITY 10

Algorithm 4.1 Weighted interval scheduling using dynamic programming

1: procedure WeightedInterval(L)

2: Sort jobs by finish times so that f1 ≤ f2 ≤ · · · ≤ fn

3: for all i = 1 to n do

4: Compute p(i)

5: end for

6:

7: for all j = 1 to n do

8: M [j]← null

9: end for

10: procedure ComputeOpt(j)

11: if M [j] is null then

12: M [j] = max(wj +ComputeOpt(p(j)),ComputeOpt(j − 1))

13: end if

14: return M [j]

15: end procedure

16: return ComputeOpt(n)

17: end procedure

Theorem 4.1. WeightedInterval runs in O(n log n) time.

Remark. The runtime of WeightedInterval is O(n) if the jobs are already sorted by finish time

and start time. We need them sorted by start time to compute the p(j) in O(n), so we can just do

one pass over the lists. Otherwise we get a n log n from doing repeated binary searches.

4.2. Segmented least squares. We use the recursion

f(j) =

0 if j = 0

c+ min
1≤i≤j

{e(i, j) + f(i− 1)} otherwise

where f(j) is the minimum cost for points p1, p2, . . . , pj , and e(i, j) is the minimum sum of squares

for points pi, pi+1, . . . , pj .

Theorem 4.2. Computing segmented least squares runs in O(n3) time. The bottleneck is computing

e(i, j) for all n2 pairs. This can in fact be done in O(n2) by trickery (it involves evaluating the

e(i, j) in increasing order of j − i), and brings the whole algorithm down to O(n2).

4.3. Knapsack problem.

Definition 4.3. f(i, w) is the maximum profit subset of items 1, . . . , i with weight limit w.

COMP 2907 - ALGORITHMS AND COMPLEXITY 11

We then have the following recursion:

f(i, w) =


0 if i = 0

f(i− 1, w) if wi > w

max {f(i− 1, w), vi + f(i− 1, w − wi)} otherwise

Theorem 4.4. The dynamic programming algorithm for the knapsack problems runs in time

O(nW) (only pseudo-polynomial).

Remark. The decision version of knapsack is NP-complete. There is however a polynomial-time

approximation algorithm that finds a feasible solution within 0.01% of the optimum.

4.4. RNA secondary structure.

Definition 4.5. f(i, j) is the maximum number of base pairs in a secondary structure of the

substring xix2 . . . xj . Let g(i, j) be the maximum number of base pairs in the case that xj is

aligned with some element. Then

g(i, j) = 1 + max
t:i≤t<j−4

bt,bjcomplementary

f(i, t− 1) + f(t+ 1, j − 1).

We use the recursion:

f(i, j) =

0 if i ≥ j − 4

max{f(i, j − 1), g(i, j)}

4.5. Sequence alignment.

Definition 4.6. f(i, j) is the minimum cost of aligning strings x1x2 . . . xi and y1y2 . . . yj

We then have the recursion:

f(i, j) =



jδ if i = 0

iδ if j = 0

min
{
αxi,yj + f(i− 1, j − 1),

δ + f(i− 1, j), δ + f(i, j − 1)} otherwise

Theorem 4.7. The naive implementation of the above algorithm can be implemented in Θ(mn)

time and space (m and n are lengths of given strings).

Lemma 4.8. By calculating the recurrence iteratively (not recursively), iterating over i and only

storing values of f(i, j) for the current i and i − 1 , we can find the optimal value in O(m + n)

space and Θ(mn) time. It is not possible to reconstruct the alignment this way however.

COMP 2907 - ALGORITHMS AND COMPLEXITY 12

Remark. By divide and conquer, we can find the optimal alignment in linear space as well. Essen-

tially, we determine where the shortest path in the edit distance graph intersects the middle column

by iterating over the elements (i, ⌊n2 ⌋) in it, summing shortest distances to the two corners (0, 0)

and (m,n). We then recurse on the left and right subproblems.

4.6. The Bellman-Ford algorithm for shortest paths. Dijkstra’s algorithm failed in graphs

with negative edge costs. To remedy this, we introduce the Bellman-Ford algorithm.

Definition 4.9. f(i, v) is the length of the shortest v − t path P using at most i edges.

Then we have the recursion:

f(i, v) =


0 if i = 0 and v = t

∞ if i = 0 and v ̸= t

min

{
f(i− 1, v), min

(v,w)∈E
{f(i− 1, w) + cvw}

}
otherwise

By only maintaining one array M [v] equal to the shortest v − t path we have found so far, we

can reduce the running time to O(mn) and space to O(m+n). No need to check edges of the form

(v, w) unless M [w] changed in the previous iteration.

4.7. Negative cycles in a graph.

Lemma 4.10. If f(n, v) = f(n− 1, v) for all v, then there are no negative cycles.

Lemma 4.11. If f(n, v) < f(n−1, v) for some node v, then any shortest path from v to t contains

a cycle W . Moreover, W has negative cost.

Theorem 4.12. We can detect negative cost cycles in O(mn) time.

• Add a new node t and connect all nodes to t with a zero-cost edge.

• Check if f(n, v) = f(n− 1, v) for all nodes v.

– If yes, then there are no negative cycles.

– If no, then extract a cycle from shortest path from v to t.

5. Network Flow

Definition 5.1 (s− t cut). An s− t cut is a partition (A,B) of V with s ∈ A and t ∈ B.

Definition 5.2. The capacity of a cut (A,B) is cap(A,B) =
∑

e out of A

c(e)

Problem 5.3 (Min s− t cut problem). Find an s− t cut of minimum capacity.

Definition 5.4 (Flow). An s− t flow is a function that satisfies:

• For each e ∈ E : 0 ≤ f(e) ≤ c(e)

COMP 2907 - ALGORITHMS AND COMPLEXITY 13

• For each v ∈ V − {s, t} :
∑

e into v

f(e) =
∑

e out of v

f(e)

The value of a flow f is v(f) =
∑

e out of s

f(e)

Problem 5.5 (Max flow problem). Find the s− t flow of maximum value.

Lemma 5.6 (Flow value lemma). Let f be any flow, and let (A,B) be any s − t cut. Then, the

net flow sent across the cut is equal to the amount leaving s.∑
e out of A

f(e)−
∑

e into A

f(e) = v(f)

Theorem 5.7 (Weak duality). Let f be any flow, and let (A,B) be any s− t cut. Then the value

of the flow is at most the capacity of the cut, that is v(f) ≤ cap(A,B).

Corollary. Let F be any flow, and let (A,B) be any cut. If v(f) = cap(A,B), then f is a max

flow and (A,B) is a min cut.

Theorem 5.8 (Max-flow Min-cut theorem). The value of a max flow is equal to the value of the

min cut.

Definition 5.9 (Augmenting path). Original edge e = (u, v) ∈ E. Flow f(e), capacity c(e).

Residual edge

• “Undo” flow sent.

• e = (u, v) and eR = (v, u)

• Residual capacity given by

cf (e) =

c(e)− f(e) if e ∈ E,

f(e) if eR ∈ E

Residual graph Gf = (V,Ef). Consists of the residual edges with positive residual capacity.

Ef = {e : f(e) < c(e)} ∪ {eR : c(e) > 0}

COMP 2907 - ALGORITHMS AND COMPLEXITY 14

Algorithm 5.1 Augments a path P

1: procedure Augment(f, c, P)

2: b← bottleneck(P)

3: for all e ∈ P do

4: if e ∈ E then f(e)← f(e) + b

5: else f(eR)← f(e)− b

6: end if

7: end for

8: return f

9: end procedure

Algorithm 5.2 Finds the maximum flow

1: procedure FordFulkerson(G, s, t, c)

2: for all e ∈ E do f(e)← 0

3: end for

4: Gf ← residual graph

5: while there exists an augmenting path P do

6: f ← Augment(f, c, P)

7: update Gf

8: end while

9: return f

10: end procedure

Theorem 5.10 (Running time of the above algorithm). Under the assumption that all capacities

are integers between 1 and C, we have that the algorithm terminates in at most v(f⋆) ≤ nC

iterations.

Corollary. If C = 1, FordFulkerson runs in O(mn) time

Corollary. The generic FordFulkerson algorithm is not polynomial in input size (m,n, logC).

Instances can be constructed which do take Θ(nC) iterations.

Theorem 5.11 (Capacity Scaling algorithm for max-flow). The following algorithm finds the max

flow in O(m logC) augmentations.

The intuition is as follows.

• Don’t worry about finding exact highest bottleneck path.

• Maintain a scaling parameter ∆.

COMP 2907 - ALGORITHMS AND COMPLEXITY 15

• Let Gf (∆) be the subgraph of the residual graph consisting of only arcs with capacity at least

∆.

Algorithm 5.3 Capacity scaling algorithm

1: procedure ScalingMaxFlow(G, s, t, c)

2: for all e ∈ E do f(e)← 0

3: end for

4: ∆← smallest power of 2 greater than or equal to C

5: Gf ← residual graph

6: while ∆ ≥ 1 do

7: Gf (∆)← ∆− residual graph

8: while there exists an augmenting path P in Gf (∆) do

9: f ← Augment(f, c, P)

10: update Gf (∆)

11: end while

12: ∆← ∆
2

13: end while

14: return f

15: end procedure

Lemma 5.12. The outer loop repeats 1+log2 C times, as ∆ decreases by a factor of 2 each iteration.

Lemma 5.13. Let f be the flow at the end of a ∆ scaling phase. Then the value of the maximum

flow is at most v(f) +m∆.

Lemma 5.14. There are at most 2m augmentations per scaling phase.

Theorem 5.15. The ScalingMaxFlow algorithm finds a max flow in O(m logC) augmentations.

It can be implemented to run in O(m2 logC) time.

5.1. Bipartite matching.

Problem 5.16 (Bipartite matching problem). Consider the following.

• Input: undirected, bipartite graph G = (L ∪R,E).

• M ⊆ E is a matching if each node appears in at most one edge in M .

• Max matching: find a maximum cardinality matching.

Convert the problem to a maximum flow problem.

• Create digraph G′ = (L ∪R ∪ {s, t}), E′).

• Direct all edges from L to R, and assign unit capacity.

COMP 2907 - ALGORITHMS AND COMPLEXITY 16

• Add sources s and unit capacity edges from each node in R to t.

Then we have the result:

Theorem 5.17. The maximum cardinality matching in G is equal to the value of the maximum

flow in G′.

Definition 5.18 (Perfect matching). A matchingM ⊆ E is perfect if each node appears in exactly

one edge in M .

Theorem 5.19. Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. Then G has a perfect

matching if and only if |N(S)| ≥ |S| for all subsets S ⊆ L (N(S) is the set of nodes adjacent to

nodes in S).

5.2. Disjoint paths.

Problem 5.20 (Edge disjoint paths). Given a directed graph G = (V,E) and two nodes s and t,

find the maximum number of edge disjoint s− t paths

Definition 5.21. Two paths are edge-disjoint if they have no edge in common.

Theorem 5.22 (Solution). Assign unit capacity to every edge. Then the maximum number of edge

disjoint s− t paths equals the maximum flow value.

Problem 5.23 (Network connectivity). Given a directed graph G = (V,E) and two nodes s and t,

find the minimum number of edges whose removal disconnects t from s.

Definition 5.24. A set of edges F ⊆ E disconnects t from s if all s − t paths uses at least one

edge in F .

Theorem 5.25. The maximum umber of edge disjoint s− t paths is equal to the minimum number

of edges whose removal disconnects t from S.

5.3. Circulation with demands and lower bounds.

Definition 5.26 (Circulation). A circulation is a function that satisfies

• For each e ∈ E : 0 ≤ f(e) ≤ c(e),

• For each v ∈ V :
∑

e into v

f(e)−
∑

e out of v

f(e) = d(v).

Theorem 5.27. Necessary condition - sum of supplies equals the sum of demands.∑
v : d(v) > 0

d(v) =
∑

v : d(v) < 0

−d(v) = D

Theorem 5.28. Formulate as a circulation problem.

• Add new sources s and sink t.

COMP 2907 - ALGORITHMS AND COMPLEXITY 17

• For every v with d(v) > 0, add edge (s, v) with capacity −d(v).
• For every v with d(v) < 0, add edge (v, t) with capacity d(v)

Then we have the following theorem.

Theorem 5.29. G has a circulation if and only if G′ has a maximum flow over value D.

Corollary. Given G = (V,E, c, d), there does not exist a circulation if and only if there exists a

partition (A,B) of G such that
∑

v∈B d(v) > cap(A,B).

Theorem 5.30. When formulating a circulation problem with lower bounds, we do the following.

• For every e ∈ E, end l(e) units of flow along edge e.

• Update demands of both endpoints.

Theorem 5.31. There exists a circulation in G if and only if there exists a circulation in G′. If

all demands, capacities and lower bounds in G are integers, then there is a circulation in G that is

integer valued.

5.4. Survey design.

Problem 5.32 (Survey design). We must

• Design survey asking n1 customers about n2 products.

• Can only survey customer i about product j if the own it.

• Ask customer i between ci and c′i questions.

• Ask between pj and p′j customers about product j.

Design a survey that meets these specifications, if possible.

Theorem 5.33. Formulate as a circulation problem with lower bounds.

• Include an edge ij if customer owns product i.

• Set L = set of customers, R = set of products.

• Set s→ i ∈ L with f(e) = [ci, c
′
i].

• Set j ∈ R→ t with f(e) = [pj , p
′
j]

5.5. Project selection.

Problem 5.34 (Project selection). Consider the following.

• A set P of possible projects. Project v has revenue pv.

• Set of prerequisites E. If (v, w) ∈ E, then we must do project w to do project v.

Choose a feasible subset of projects to maximise revenue.

Definition 5.35 (Prerequisite graph). A graph on the nodes of projects, with the following prop-

erties:

COMP 2907 - ALGORITHMS AND COMPLEXITY 18

• Include an edge from v to w if we must do project w to do project v.

• Assign capacity ∞ to all prerequisite edges.

• Add an edge (s, v) with capacity pv if pv > 0.

• Add an edge (v, t) with capacity −pv if pv < 0.

• Define ps = pt = 0.

Theorem 5.36. (A,B) is a minimum cut if and only if A− {s} is the optimal set of projects.

6. Reductions

Definition 6.1 (Polynomial time reduction). Problem X reduces to problem Y if arbitrary in-

stances of problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to an oracle that solves problem Y .

We denote this as X ≤p Y

Note. We can use this to classify problems according to relative difficulty.

Lemma 6.2. If X ≤p Y and Y can be solved in polynomial time, then X can also be solved in

polynomial time.

Note. If X ≤p Y and Y ≤p X, then we use the notation X ≡p Y . In fact the binary relation ≤p is

a partial order on the set of all problems, because it is reflexive, anti-symmetric, and transitive.

There are three basic strategies for polynomial time reduction.

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Problem 6.3 (IndependentSet). Given a graph G = (V,E) and an integer k, is there a subset

of vertices S ⊆ V such that |S| ≥ k and for each edge, at most one of its endpoints is in S?

Problem 6.4 (VertexCover). Given a graph G = (V,E) and an integer k, is there a subset of

vertices S ⊆ V such that |S| ≤ k and for each edge, at least one of its endpoints is in S?

Theorem 6.5. We claim VertexCover ≡p IndependentSet.

Proof. S is an independent set if and only if V − S is a vertex cover. �

Problem 6.6 (SetCover). Given a set U of elements, a collection S1, S2, . . . , Sm of subsets of

U , and an integer k, does there exists a collection of at most ≤ k of these sets whose union is equal

to U?

Theorem 6.7. VertexCover ≤p SetCover

COMP 2907 - ALGORITHMS AND COMPLEXITY 19

Proof. Given a VertexCover instance G = (V,E), k, we can construct a set cover instance whose

size equals the size of the vertex cover instance. Set k = k, U = E,Sv = {e ∈ E : e incident to v}.
Then there is a set cover of size ≤ k if and only if there is a vertex cover of size ≤ k. �

Theorem 6.8. 3-sat ≤p IndependentSet

Proof. Given an instance Φ of 3-sat, we construct an instance (G, k) of IndependentSet that

has an independent set of size k if and only if Φ is satisfiable.

• In each clause, connect all literals in a triangle.

• Connect literal to each of its negations.

�

Theorem 6.9 (Self-reducibility). Consider the following.

• Decision problem. Does there exist a vertex cover of size ≤ k?

• Search problem. Find vertex cover of minimum cardinality.

By self-reducibility, we have that the search problem reduces to the decision problem. That is,

search problem ≤p decision problem. This applies to all (NP-complete) problems in this chapter.

This is dependent on the number of possible values of the optimal (you cannot binary search an

infinite set).

7. Complexity

Definition 7.1 (Complexity classP). The class of decision problems for which there is a polynomial

time algorithm.

Definition 7.2 (Certifier). An algorithm C(s, t) is a certifier for a problem X if for every string

s, s ∈ X if and only if there exists a string t such that C(s, t) outputs true. The string t is known

as a certificate or witness.

Definition 7.3 (Complexity class NP). The class of decision problems for which there is a poly-

nomial time certifier - an algorithm C(s, t) that is polynomial in time and |t| ≤ p(|s|) for some

polynomial P.

Remark. NP stands for nondeterministic polynomial time.

Example 7.4 (Certifiers and Certificates - sat). Consider the problem sat - given a CNF (con-

junctive normal form - the ‘and combination of many or clauses’) formula Φ, is there a satisfying

assignment?

• Certificate. An assignment of truth values to the n boolean variables.

• Certifier. Check that each clause in Φ has at least one true literal.

Conclusion: sat is in NP.

COMP 2907 - ALGORITHMS AND COMPLEXITY 20

Example 7.5 (Certifiers and Certificates - HamiltonianCycle). Consider the problem Hamil-

tonianCycle - given an undirected graph G = (V,E), does there exist a simple cycle C that visits

every node?

• Certificate. An permutation of the n nodes.

• Certifier. Check that the permutation contains each node in V exactly once, and that

there is an edge between each pair of adjacent nodes in the permutation.

Conclusion: HamiltonianCycle is in NP.

Definition 7.6 (Complexity class EXP). The class of decision problems for which there is an

exponential time algorithm

Theorem 7.7.

P ⊆ NP ⊆ EXP

7.1. NP-Completeness.

Definition 7.8 (Polynomial transformation). A problem X polynomial transforms to problem

Y if given any input x to X, we can construct an input y in polynomial time such that x is a

true instance of X if and only if y is a true instance of Y . |y| must be polynomial in |x| as it

is constructed in polynomial time. The definition of transformation is due to Karp, reduction to

Cook.

Remark. A polynomial transformation is a polynomial reduction with just one call to oracle for Y ,

exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Definition 7.9 (NP-complete). A problem Y in NP is NP-complete if for every problem X in

NP, X ≤p Y .

Theorem 7.10. Suppose Y is NP-complete. Then Y is solvable in polynomial time if and only if

P = NP.

Example 7.11 (Establishing a problem Y is NP-complete). The following is sufficient.

• Show that Y is in NP.

• Choose an NP-complete problem X.

• Show that X ≤p Y .

Theorem 7.12. 3-sat is NP-complete

Proof. circuit-sat ≤p 3-sat �

Corollary. VertexCover, IndependentSet, and SetCover are all NP-complete.

Proof. By reductions in the first part, we had that 3-sat reduces to all of the above problems.

Hence, they are all NP-complete. �

COMP 2907 - ALGORITHMS AND COMPLEXITY 21

7.2. co-NP and the Asymmetry of NP.

Definition 7.13. Given a decision problem X, its complement X is the same problem with the

true and false answers reversed.

Definition 7.14 (Complexity class co-NP). Complements of decision problems in NP.

Question 7.15. Does NP = co-NP?

Theorem 7.16. If NP ̸= co-NP, then P ̸= NP.

Theorem 7.17. P ⊆ NP ∩ co-NP

Theorem 7.18. primes is in NP ∩ co-NP. In fact primes is in P (AKS 2002).

Theorem 7.19 (factor is in NP ∩ co-NP). Consider the following problems.

factorize. Given an integer x, find its prime factorisation.

factor. Given two integers x and y, does x have a nontrivial factor less than y?

Theorem 7.20. factor ≡p factorize

Then we have factor is in NP ∩ co-NP

We have established the following sequence.

primes ≤p composites ≤p factor

Question 7.21. Does factor ≤p primes?

Definition 7.22 (NP-hard). A decision problem such that every problem in NP reduces to it.

This problem is not necessarily in NP.

8. Dealing with Intractability

Here, we attempt to solve special cases of NP-complete problems that arise in practice.

8.1. Vertex Cover.

Theorem 8.1. The following algorithm determines if G has a vertex cover of size less than or

equal to k in O(2kkn) time.

COMP 2907 - ALGORITHMS AND COMPLEXITY 22

Algorithm 8.1 Small vertex covers

1: procedure VertexCover(G, k)

2: if G contains no edges then return True

3: end if

4: if G contains more than k|G| edges then return False

5: end if

6:

7: Let (u, v) be any edge of G

8: a = VertexCover(G− {u}, k − 1)

9: a = VertexCover(G− {v}, k − 1)

10: return a or b

11: end procedure

Theorem 8.2. The above algorithm runs in time O(2kkn).

8.2. Independent set on trees.

Theorem 8.3. The following greedy algorithm finds a maximum cardinality independent set in

forests (and hence trees).

Algorithm 8.2 Finds an independent set in a tree or forest.

1: procedure IndependentSet(F)

2: S ← ϕ

3: while F has at least one edge do

4: Let e = (u, v) be an edge with v a leaf.

5: S ← S ∪ {v}
6: F ← F − {u, v}
7: end while

8: return S

9: end procedure

Theorem 8.4. The above algorithm can run in time O(n) by considering nodes in postorder.

8.3. Weighted independent set on trees.

Problem 8.5. Given a tree and node weights wv > 0, find an independent set S that maximises∑
v∈S wv.

COMP 2907 - ALGORITHMS AND COMPLEXITY 23

Theorem 8.6. Let fin(u) be the maximum weight independent set rooted at u containing u, and

let fout(u) be the maximum weight independent set rooted at u not containing u. Then we have the

following:

fin(u) = wu +
∑

v∈child(u)

fout(v)

fout(u) =
∑

v∈child(u)

max{fin(v), fout(v)}

We can find the maximum weighted set by rooting the tree at a node r and considering each

node in postorder, and calculating fin and fout at each node v. This takes O(n) time.

9. Randomized and approximation algorithms

9.1. Probability results. The union bound is P (∪iXi) ≤
∑

i P (xi).

The Markov inequality for a non-negative X is P (X ≥ a) ≤ E[X]
a .

Chebyshev’s inequality is P (|X − E [X]| ≥ a) ≤ Var(X)
a2 .

The horrific Chernoff bound is
n∑

i=⌊n
2 ⌋+1

(
n
i

)
pi(1− p)n−i ≥ 1− e−2n(p− 1

2)
2

.

9.2. Randomized algorithm for global minimum cut. The following algorithm, known as the

Contraction algorithm, finds the global minimum cut in an undirected graph.

Definition 9.1 (Global minimum cut). The size of a cut (A,B) of a graph G is the number of

edges with one end in A and one end in B.

Algorithm 9.1 The Contraction algorithm for finding the global minimum cut

1: procedure Contraction(G)

2: for all v ∈ V do S[v]← v

3: end for

4: if |G| = 2 then return the cut (S[v1], S[v2])

5: else

6: choose an edge e = (u, v) from G uniformly at random.

7: Set G′ equal to the graph resulting from the contraction of e, with a new node w replacing

u and v.

8: S[w]← S[u] ∪ S[v]

9: return Contraction(G′)

10: end if

11: end procedure

COMP 2907 - ALGORITHMS AND COMPLEXITY 24

Theorem 9.2. The algorithm returns the global minimum cut with probability
(
n
2

)−1
. Running the

algorithm
(
n
2

)
log n returns a global minimum cut with probability greater than 1− 1

n

9.3. Approximation algorithm for makespan scheduling.

Problem 9.3 (Makespan scheduling). We have n jobs, each of which takes time ti to process, and

m machines. Let Aj be the set of jobs assigned to machine j. Let Lj =
∑

i∈Aj
ti be the load of

machine j. The makespan of an assignment is the maximum load on any machine.

Algorithm 9.2 Longest Processing Time (lpt) makespan approximation

1: procedure lpt(J)

2: Sort jobs J so that t1 ≥ t2 ≥ · · · ≥ tn.

3: Aj ← ∅
4: Lj ← 0.

5: for i = 1 to n do

6: j ← argminkLk

7: Aj ← Aj ∪ i

8: Lj ← Lj + ti

9: end for

10: end procedure

Theorem 9.4. If there are at most m jobs, lpt scheduling is optimal.

Theorem 9.5. lpt scheduling is a 3
2 -approximation. Careful analysis shows that lpt scheduling

is a 4
3 -approximation

9.4. Randomized algorithm for max-3-sat.

Problem 9.6 (max-3-sat). Given a 3-sat instance, find a truth assignment that satisfies as many

clauses as possible.

Lemma 9.7. As 3-sat is NP-complete, this is an NP-hard search problem.

Theorem 9.8. We can find an approximate solution by setting each variable true with probability
1
2 . The expected number of clauses satisfied by a random assignment is within a factor of 7

8 of the

optimal solution.

Proof. Each clause is satisfied with probability 1 −
(
1
2

)3
= 7

8 . Let Zi be a random variable equal

to 1 if clause i is satisfied, and 0 otherwise. Then, by linearity of expectation, we have

E [Z] = E [Z1] + E [Z2] + · · ·+ E [Zk] =
7

8
k

Since no assignment can satisfy more than k clauses. �

COMP 2907 - ALGORITHMS AND COMPLEXITY 25

9.5. Randomized algorithm for database access.

Problem 9.9. Suppose we have n processes P1, . . . , Pn attempting to access a single shared data-

base. The database has the property that it can be accessed by at most one process in a single time

period, and if two or more processes attempt to access the database, all processes are locked out for

the period.

Theorem 9.10. Using a randomized algorithm where a process attempts to access the database with

probability 1
n at each time step, we have the following: with probability at least 1− 1

n , all processes

succeed in accessing the database at least once within t = e⌈en⌉ lnn rounds.

9.6. Approximation algorithm for the travelling salesman problem. In the case of the

metric-tsp, where the edge weights satisfy the triangle inequality, we have the following simple

algorithm for a 2-approximation for tsp.

Algorithm 9.3 2-Approximation for Metric-tsp

1: procedure Approx-Metric-tsp(G)

2: Compute a minimal spanning tree T of G

3: Root T arbitraryily and traverse in pre-order (i.e. dfs): v1, v2, . . . , vn.

4: return tour: v1 → v2 → · · · → vn → v1

5: end procedure

Lemma 9.11. Let A(G) be the approximation returned by the above algorithm on the graph G.

Then A(G) ≤ 2×MST(G).

Lemma 9.12. Let OPT(G) be the optimal solution for our metric-tsp instance. Then MST(G) ≤
opt(G).

Theorem 9.13. We then have A(G) ≤ 2 × OPT(G) - that is, the above algorithm is a 2-

approximation for Metric-tsp

9.7. Some NP-complete problems. The following are some decision problems which are NP-

complete.

• 3SAT

• Vertex cover

• Independent set

• Clique

• Travelling salesman

• Hamiltonian path

• Hamiltonian circuit

• Max cut

• Longest path

• Knapsack

• Subset sum

	1. Introduction
	1.1. Graphs

	2. Greedy Algorithm
	2.1. Interval scheduling
	2.2. Interval Partitioning
	2.3. Some simple greedy algorithms
	2.4. Dijkstra's algorithm
	2.5. Minimum spanning trees

	3. Divide & Conquer
	3.1. Closest pair of points
	3.2. Multiplication

	4. Dynamic Programming
	4.1. Weighted interval scheduling
	4.2. Segmented least squares
	4.3. Knapsack problem
	4.4. RNA secondary structure
	4.5. Sequence alignment
	4.6. The Bellman-Ford algorithm for shortest paths
	4.7. Negative cycles in a graph

	5. Network Flow
	5.1. Bipartite matching
	5.2. Disjoint paths
	5.3. Circulation with demands and lower bounds
	5.4. Survey design
	5.5. Project selection

	6. Reductions
	7. Complexity
	7.1. NP-Completeness
	7.2. co-NP and the Asymmetry of NP

	8. Dealing with Intractability
	8.1. Vertex Cover
	8.2. Independent set on trees
	8.3. Weighted independent set on trees

	9. Randomized and approximation algorithms
	9.1. Probability results
	9.2. Randomized algorithm for global minimum cut
	9.3. Approximation algorithm for makespan scheduling
	9.4. Randomized algorithm for max-3-sat
	9.5. Randomized algorithm for database access
	9.6. Approximation algorithm for the travelling salesman problem
	9.7. Some NP-complete problems

