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1. THEORY OF OPTION PRICING

Definition 1.1 (Brownian motion). A process W; is a P-Brownian motion if it satisfies

(1) W; is continuous with Wy =0 (a.s.)
(2) W, has stationary and independent increments.
(3) For any t > 0, Wy ~ N(0,t) under the probability measure P.

Theorem 1.2 (Properties of conditional expectation). Assume we have a probability space (€2, P)
and o-algebras G,G1,Go. Assume that Go C G1. Then

(1) If X is a random variable, then
E(X[G2) = E(E(X |G1)|G2)
(2) If Y is a G-measurable random variable, then
E(XY |G) =YE(X|G)
Definition 1.3 (Martingale). A stochastic process X; is a Fz-martingale if E(|X;|) < oo and
Xs =E(X¢ | Fs)
for all s <'t.
Theorem 1.4 (It6’s lemma). If F(X;,t) is Coy and dX; = oy dt + By AWy, then
dF = (Fy + oF, + %52Fm) dt + BE, dW,
Lemma 1.5 (Product and Quotient rule). Let X; be an Ité processes, so that
dX; = adt + dW;.

Let F(Xy,t), G(Xy,t) be Co1. Then

d(FG) = (FdG + GdF) + *F,G, dt

GdF — FdG  B%G,
GQ + G3

Lemma 1.6 (Itd isometry). If o5 € L?, then

E(/OtUSdWS)QzE(/OtUst)

Definition 1.7 (Local martingale). X; is a local martingale if there exists a sequence of stopping

d(F/G) =

(FG, — GF,)dt

times v, such that for every n, the process X;" = Xyin(, ) is a martingale.

Theorem 1.8 (Martingale representation theorem). Let F; be the natural filtration of a Brownian

motion.
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(1) Any progressively measurable process oy satisfying
t
IP’(/ olds) <oo=1 Vt
0

the process
t
t '—>/ os dW
0

is a local martingale.

(2) If X, is an L?> martingale, then there exists a progressively measurable process o, such that

t
Xt :/ O'SdWS
0

Hence the Brownian martingales (martingales with respect to the Brownian filtration) are essen-

tially the It6 integrals.

Theorem 1.9 (Girsanov). Let Ay be progressively measurable with

1 T
Eexp(i/ N2(1) dt) < oo
0
Then there exists a measure P* such that

(1) P* is equivalent to P,

(2)
dP*

t 1 t
I :exp(—/o Atth—§/0 A2 dt)

(8) Wr=W;+ fot As ds is a P*-Brownian motion

As a partial corollary, if P* is equivalent to P then there exists a progressively measurable process
At such that

t
W;:Wt+/ s ds
0

is a Brownian motion under P*.

Corollary. We can then use Girsanov’s theorem to transform a Brownian motion with drift to a

martingale. e.g. Under P,
dX; = pedt + o dWy
= o d(Wy + /Ot oy s ds)
= oy dW}

where we set \s = o3 s in Girsanov’s theorem.



AMH4 - ADVANCED OPTION PRICING 4

Theorem 1.10 (Multivariate It6’s lemma). Let dX; ¢ = o dt + B; AW, with W, 4 correlated Brow-
nian motions. Then if F(X14,...,Xny,t) is Co1, then

n n n

dF = | I} +ZaiFi + %ZzﬁiﬁjpijFij dt—FZﬂiFi dWl(t)
=1 =1

i=1 j=1
2. BLACK-ScHOLES PDE METHOD

Theorem 2.1 (Black-Scholes PDE). Let f(Xy,t) represent the price of a contingent claim on an
asset X, where X; is assumed to follow geometric Brownian motion. Under certain assumptions,
we can derive the Black-Scholes PDE,

1
ft = Tf _Txfz - 5021'2]0190

Solving the Black-Scholes PDE along with initial conditions and payoff at expiration yields the

function f(X¢,t) which gives the option value at any time t and any underlying value X;.

3. MARTINGALE METHOD
Consider a market with risky security X; and riskless security B;.

Definition 3.1 (Contingent claim). A random variable Cr : @ — R, Fpr-measurable is called a

contingent claim. If Cr is o(Xr)-measurable it is path-independent.

Definition 3.2 (Strategy). Let a; represent number of units of X;, and f; represent number of
units of B;. If oy, 5; are Fi-adapted, then they are strategies in our market model. Our strategy
value V; at time ¢ is

Vi = ar Xt + BBy

Definition 3.3 (Self-financing strategy). A strategy (au, S¢) is self financing if
dVy = ay dX; + By dBy

The intuition is that we make one investment at ¢ = 0, and after that only rebalance between X,
and Bt.

Definition 3.4 (Admissible strategy). (as, ;) is an admissible strategy if it is self financing
and V; >0forall 0 <t <T.

Definition 3.5 (Arbitrage). An arbitrage is an admissible strategy such that Vo = 0,V > 0 and
P(VT > O) > 0.

Definition 3.6 (Attainable claim). A contingent claim C7r is said to be attainable if there exists
an admissible strategy (o, ;) such that Vi = Cp. In this case, the portfolio is said to replicate
the claim. By the law of one price, C; = V4 at all ¢.
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Definition 3.7 (Complete). The market is said to be complete if every contingent claim is

attainable

Theorem 3.8 (Harrison and Pliska). Let P denote the real world measure of the underlying asset
price X;. If the market is arbitrage free, there exists an equivalent measure P*, such that the
discounted asset price X; and every discounted attainable claim C, are P*-martingales. Further, if

the market is complete, then P* is unique. In mathematical terms,
Cy = B{E*(B;'Cr | Fy).

P* is called the equivalent martingale measure (EMM) or the risk-neutral measure.

4. MONTE CARLO METHODS

4.1. Method of antithetic variances. Instead of simulating X, also simulate a random variable
Z with the same variance and expectation as X, but is negatively correlated with X. Then take as

Y the random variable

X+Z
Y =
2
Obviously E(Y) = E(X). On the other side, we have
Var(Y) = Cov <X ;r Z, X ;r Z)

1 1
= iVar(X) +2Cov(X, Z) 4+ Var(Z) < §Var(X)
So we can reduce variance by a factor of two.
4.2. Control variate method.

Theorem 4.1. Suppose we seek to estimate 8 = E(Y) where Y = h(X) is the outcome of a
simulation. Suppose that Z is also an output of the simulation, and assume that E(Z) is known.
Let

_ Cou(Y, Z)
= V) (1)
Then
b. =Y + c(E(Z) — 2) (1)

is an unbiased estimator of 0, and if Cou(Y,Z) # 0, éc has a lower variance than 6 = Y, and indeed

has the lowest variance for all estimators of the form
0, =Y +y(E(Z) - 2)

Proof. We have
Var(f,) = Var(Y) + ¢*Var(Z) — 2¢ Cov(Y, Z). (%)
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From elementary methods of calculus, we see that Varf,. is minimised at

_ Cov(Y,Z)
~ Var(2)
Substituting in this value for ¢ in (%), we obtain
AN Cov(Y, Z)?
Var(@c) = Var(Y) - T(Z)
B ~ Cov(Y,Z)?
= Var(0) — ~Nar(Z)

and thus we only need Cov(Y, Z) # 0 to obtain our variance reduction.
In practice, we do not know Cov(Y, Z). Thus, we have to do a number of burn-in simulations to

generate Y and Z, and then compute an estimate ¢ to use in the full simulation. O

5. NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Theorem 5.1. Let
dXt = &(t, Xt) dt + b(t, Xt) dBt

Assume EXg < 0o. X is independent of Bs and there exists a constant ¢ > 0 such that

(1) la(t, z) + [b(t, z)| < C(1 + |z]).
(2) a(t,x),b(t, z) satisfy the Lipschitz condition in x, i.e.

la(t,z) — a(t,y)| + [b(t, z) — b(t,y)| < Clz —y|
for allt € (0,7).
Then there exists a unique (strong) solution.
Definition 5.2 (Strong convergence). A numberical scheme for solving an SE is said to converge
with strong order =, if for sufficiently small A, we have
E(|X(T) — Xn|) < KrA”Y
This implies that the generated paths approximate the true paths of the SDE - and so one calls
this path-wise convergence or strong convergence.
Definition 5.3 (Weak convergence). A numerical scheme for solving an SDE is said to converge
with weak order § if for sufficiently small A and each polynomial g, we have
[E(g9(X7)) — E(g(Xn))| < Ky rA”

Note that strong convergence always implies weak convergence.
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Note also that strong convergence implies pathwise convergence. This is true by Markov’s in-

equality, we have

E(|X» — X(T)))
_ B/2 AAn — A
P(|X, — X(T)] 2 A%/ < =t
AP
<C AB/2
Note. (1) Weak convergence is basically convergence in distribution, but it has no path-wise

properties.

(2) If terms like E(h(X7)) are computed via Monte Carlo, then the weak convergence concept
is sufficient.

(3) If the option is a path dependent option, then strong convergence is the right concept, as
the payoff depends on the whole path, rather than the distribution of the terminal value of
the stock.

Theorem 5.4 (Euler-Maruyama scheme).
Xo = X(0)
Xnt1 = Xy + altn, X)) Ay, + b(t,, Xn) AW,
where
Al = tni1 — by

AW, =W, — W1

n

FEuler-Maruyama has strong convergence order v = % and weak convergence order 3 = 1.

Theorem 5.5 (Milstein scheme). Consider the homogenous scalar stochastic differential equation

dXt = G(Xt) dt + b(Xt) th

Xo = X(0)
Xps1 = Xo + a(X,) Aty + b(X,) AW, + %b/(Xn)b(Xn)((AWn)z — Aty)

One can prove that the Milsten scheme has strong and weak convergence order v = 1.

6. STOCHASTIC OPTIMAL CONTROL
Definition 6.1 (Controlled stochastic differential equation).
dx(t) = f(t, z(t),u(t)) dt + o(t, z(t), u(t)) dW(t)

where u(t,w) = u(t, z(t,w)) is a stochastic process, known as the control.
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Definition 6.2 (Admissible control). A control u is called admissible for the constraints if for every
initial value zy € S the corresponding stochastic differential equation has a unique solution with
x(0) = zp and u(t,w) € U for all t € [0, 00]. We denote the set of admissible controls with A.

Definition 6.3 (Stochastic optimal control problem). We seek to solve

max E

T o
na /O e~ Bt 2(t), ult)) di + =T S((T)) - oo dt

under the dynamic constraint
dz(t) = f(t,z(t),u(t)) dt + o(t,z(t), u(t)) dW(t)

with initial condition 2(0) = x¢, and discount rate r > 0.
B is called the benefit function, S is called the final payoff, and the control u is called the optimal

control, and the optimal value is called the value of the problem.

Definition 6.4 (Value function).

maxE

T
A / e "B (s, 2(s),u(s)) ds + e "I IS(@(T)) - 1reoo dt | 2(t) = =
ue t

subject to
dx(s) = f(s,z(s),u(s)) ds + o(s,z(s),u(s)) dW(s)
z(t) ==z

Note that V(0, z) is the value of the optimal control problem. V' (¢, x) is the value of the problem,
if we started at time t with initial state x.

Theorem 6.5 (Hamilton-Jacobi-Bellman equation). Assume T' < co. Let V : [0,T] xS — R be a
Ci,2 function and assume it satisfies the HJB equation
1
rV(t,z) — Vi(t,z) = max (B(t7 x,u) + Vip(t, z) f(t, x,u(t)) + itr(Vm(t, x)o(t,z,u)o(t,z, u)T))
ue

V(T,z) = S(x).

Let ¢(t,x) be the set of maximisers of the right hand side and let u* € A such that u*(t,w) €
o(t,x(t,w)) for allt € [0,T],w € Q. Then u* is the optimal control and V' is the value function for

the stochastic optimal control problem.

Theorem 6.6 (Hamilton-Jacobi-Bellman equation, infinite time). Consider the time homogenous,

infinite time horizon problem

max E
ueA

/0 T e B (), u(t)) dt
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subject to
dz(t) = f(x(t),u(t)) dt + o(x(t), u(t)) dW;.

Then the value function is independent of t, and so V(t,z) = V(x), and the optimal control is of
the type u(t,z) = u(x). The HBJ equation in this case becomes the ODE

rV(z) = max <B(x, w)+ V' (x)f(z,u) + %V”(a:)a(x, u)z)

u
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