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CHAPTER 1

Preliminaries

1. Introduction to Interest Rate Modelling

There is a one-to-one correspondence between the class Q of all probability
measures equivalent to P and the class Λ of all F-adapted (or F-predictable) process
λt satisfying

P

(∫ T⋆

0

|λu|2 du <∞

)
= 1

and
EP

(
ET⋆

(∫ ·

0

λu dWu

))
= 1

Thus our correspondence is

Q ∋ Pλ ⇐⇒ λ ∈ Λ.

Consequently,

(i) dQ
dP = ηT⋆

(ii)
dQ
dP

| Ft = ηQt

= EP (ηT⋆ | Ft)

= Et
(∫ ·

0

λu dWu

)

Theorem 1.1 (Abstract Bayes formula). Let Q ∼ P with dQ
dP = η. Suppose that

G ⊂ F . We then have
EQ(X | G) = EP(ηX | G)

EP(η | G)
.

Note that is G = {∅,Ω} then the formula reduces to

EQ(X) = EP(ηX).

If Q ∼ P with dQ
dP |Ft = ηt, for all t ∈ [0, T ⋆], then

EQ(X | Ft) =
EP(ηT⋆X | Ft)

EP(ηT⋆ | Ft)
.
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1. INTRODUCTION TO INTEREST RATE MODELLING 6

Hence if X is Ft measurable for some T ∈ [0, T ⋆] then

EQ(X | Ft) =
EP(ηTX | Ft)

ηt
= EP(η

−1
t ηTX | Ft)

Example 1.2. If ηt = Et
(∫ ·

0
λu dWu

)
, then

EQ(X | Ft) = EP(e
∫ T
t

λu dWu− 1
2

∫ t
0
|λu|2 duX | Ft)

Lemma 1.3. A F-adapted and Q-integrable process M is a (Q,F)-martingale if
and only if the product Mη is a (P,F)-martingale.

Proof. EQ(Mt | Fs) =Ms, s ≤ t, so

Ms = EQ(Mt | Fs) =
EP(ηtMt | Fs)

ηs

�

Lemma 1.4. If X and Y are two processes of the form

dXt = αt dt+ βt dWt

dYt = α̃t dt+ β̃t dWt

then the product satisfies the Itô product formula

d(XtYt) = Xt dYt + Yt dXt + d⟨X,Y ⟩t

If X is of the form dXt = αt dt + βt dWt and f is of class C2(R), then the
continuos martingale part of Yt = f(Xt) is given as∫ t

0

f ′(Xu)βu dWu

Proposition 1.5.

Proof of Proposition 1.1. Let Pλ be equivalent to P, so that

dηt = ηtλt dWt

and
dPλ

dP
= ηt

on (Ω,Ft), t ∈ [0, T ⋆].
Define B(t, T ) as follows, for all t ∈ [0, T ],

B(t, T ) = BtEPλ

(
1

BT
| Ft

)
= EPλ

(
e−

∫ T
t

ru du | Ft

)
For i), we simply apply Girsanov’s theorem, replacing dWt by dWt = dWλ

t −
λt dt in the dynamics of r under P.
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For ii), we first recall that Z(t, T ) = B(t,T )
Bt

is given by

Z(t, T ) = EPλ

(
1

BT
| Ft

)
is a (Pλ,F)-martingale.

Note that Fλ ̸= F in general. From Lemma 1.3, we know that ηtZ(t, T ) is
a (P,F)-martingale. Thus applying the predictable representation property, there
exists an F-adapted process γt such that

Mt ≡ ηtZ(t, T ) = Z(0, T ) +

∫ t

0

γu dWu

for all t ∈ [0, T ]. Consequently, dMt = γt dWt and hence

dZ(t, T ) = d(η−1
t Mt) =Mt dη

−1
t + η−1

t dMt + d⟨η−1,M⟩t

where

dη−1
t = −η−1

t λt dW
λ
t .

We obtain

dZ(t, T ) = ηtZ(t, T )
(
−η−1

t λt dW
λ
t

)
+ η−1

t γt
(
dWλ

t + λt dt
)
+
(
−η−1

t λtγt
)
dt

= η−1
t (γt −Mtλt) dW

λ
t

so that
dZ(t, T ) = b̃λ(t, T ) dWλ

t

Since B(t, T ) = BtZ(t, T ), using again the Itô formula we have

dB(t, T ) = Bt dZ(t, T ) + Z(t, T ) dBt

=
B(t, T )

Bt
rtBt dt+Btb̃

λ(t, T ) dWλ
t

= rtB(t, T ) dt+B(t, T )
Btb̃

λ(t, T )

B(t, T )︸ ︷︷ ︸
bλ(t,T )

dWλ
t .

We conclude that for all T ∈ [0, T ⋆], there exists an F-adapted process bλ(t, T ),
t ∈ [0, T ] called the volatility of the bond , such that

dB(t, T ) = B(t, T )(rt dt+ bλ(t, T ) dWλ
t ).

In fact, it does not depend on the choice of λ. For simplicity, we can write b(t, T ) ≡
bλ(t, T ).
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The final formula is a special case of the well known result:

dXt = Xt(αt dt+ βt dWt)

⇕

Xt = X0e
∫ t
0
αu duEt

(∫ ·

0

βu dWu

)
= X0e

∫ t
0
αu due

∫ t
0
βu dWu− 1

2

∫ t
0
|βu|2 du

This completes our proof of Proposition 1.1, under the assumption that 1
BT

is
Pλ-integrable. �

There are still several issues given this pricing formula.
(i) How to compute b(t, T ) explicitly in terms of µ and σ under the assumptions

that
drt = µ(rt, t) dt+ σ(rt, t) dWt

and λt = λ(rt, t) is the risk premium.
(ii) How can we calibrate our short-term rate model, meaning that

EPλ

(
1

BT

)
= B(0, T ) = P (0, T ).

The issue of pricing bonds is related to solving a backward stochastic differential
equation (BSDE). The general form is

Xt = X0 +

∫ t

0

µ(Xu, u) du+

∫ t

0

ξu dWu (⋆)

where µ : R× R+ → R is some function and ξ is some F-adapted process. We also
fix T > 0 and postulate that XT is a known FT -measurable random variable.

Definition 1.6. We say that (X, ξ) solves the BSDE with terminal condition with
terminal condition Y (FT -measurable) if:

(i) (X, ξ) satisfies (⋆),
(ii) XT = Y .

This can be extended to cases where µ : R× R+ × Ω → R is F-adapted.



CHAPTER 2

Markovian Models of the Short Rate

Let P⋆ be a martingale measure in the sense that

B(t, T ) = EP⋆

(
e−

∫ T
t

ru du | Ft

)
.

In particular,
B(0, T ) = EP⋆

(
e−

∫ T
0

ru du
)
.

We postulate that
drt = µ(rt, t) dt+ σ(rt, t) dW

⋆
t , (2.1)

where W ⋆ is a Brownian motion under P⋆. The filtration F is any filtration such
that W ⋆ is a BM with respect to F . We assume that (2.1) has a unique (strong)
solution.

Then it known that rt has the Markov property with respect to F, meaning
that for any bounded continuous function h : R → R,

EP⋆ (h(rt) | Fs) = EP⋆ (h(rt) | rs)

for all s ≤ t.
Hence

EP⋆

(
e−

∫ T
t

ru du | Ft

)
= v(rt, t, T ) = ṽ(rt, t)

suppressing the dependence on T .
Goals:

(i) Compute explicitly v(rt, t, T ) for some classical models
(a) Merton’s model
(b) Vasicek’s model
(c) CIR model (Bessel process)
using either the probabilistic approach (martingale measure) or the analytic
approach (PDEs).

(ii) Represent the price of the bond as follows

B(t, T ) = exp (m(t, T )− n(t, T )rt)

For a fixed maturity T ,

m(·, T ), n(·, T ) : [0, T ] → R

9



1. MERTON’S MODEL 10

can also be computed using the second method by separating variables in the
PDE. Note that m(T, T ), n(T, T ) = 0.

(iii) Compute explicitly the volatility b(t, T ) of the bond by applying the Itô for-
mula to the function v(rt, t, T ).

(iv) Extend the model to the time-inhomogenous case in order to ensure that
B(0, T ) = P (0, T ) for all T ∈ [0, T ⋆].

1. Merton’s model

Assure
rt = r0 + at+ σW ⋆

t

where W ⋆ =Wλ for some λ. Hence

drt = a dt+ σ dW ⋆
t , r0 > 0. (2.2)

Note. The generator of the time homogenous Markov diffusion can be represented
as

Ar = a
∂

∂r
+

1

2
r2
∂2

∂r2
.

Proposition 2.1. The price B(t, T ) is given by

B(t, T ) = e−rt(T−t)− 1
2a(T−t)2+ 1

6σ
2(T−t)3 . (2.3)

Hence
dB(t, T ) = B(t, T ) (rt dt− σ(T − t)dW ⋆

t ) .

Thus we have the volatility of the bond b(t, T ) = −σ(T − t).

Proof. It is enough to calculate B(0, T ) and then establish the general formula
for B(t, T ) using the property that rt is a time-homogenous Markov process, thus

B(0, T ) = v(r0, T ) ⇒ B(t, T ) = v(rt, T − t)

Computation of B(0, T ) is done as follows:

B(0, T ) = EP⋆

(
e−

∫ T
0

ru du
)
= EP⋆

(
e−ξT

)
where the distribution of ξT can be found explicitly. We argue that

ξT ∼ N

(
r0T +

1

2
aT 2,

1

3
σ2T 3

)
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We have

ξT =

∫ T

0

ru du

=

∫ T

0

(r0 + au+ σW ⋆
u ) du

=

∫ T

0

(ru + au) du+ σ

∫ T

0

W ⋆
u du

Th rest proceeds quite simply.
We then derive the dynamics of B(t, T ). By the Itô formula, we have that since

B(t, T ) = v(rt, t, T ), we must have

dB(t, T ) = rtB(t, T ) dt+ b(t, T )B(t, T ) dW ⋆
t .

Note that the martingale component comes from
∂v

∂r
drt

and
∂

∂r
v(rt, t, T ) = −(T − t)v(rt, t, T )

so that
∂

∂r
v(rt, t, T ) drt = −(T − t)v(rtt, T )(a dt+ σ dW ⋆

t )

∼ −σ(T − t)B(t, T ) dW ⋆
t

We then obtain the equality B(t, T ) = −σ(T − t). In particular, B(t, T ) = 0. �

Exercise 2.2. Apply the PDE approach to obtain (2.3).

2. Vasicek’s Model

Consider the dynamics

drt = (a− brt) dt+ σ dW ⋆
t . (2.4)

Lemma 2.3. The unique solution to Vasicek’s equation is

rt = r0e
−bt +

a

b

(
1− e−bt

)
+ σ

∫ t

0

e−b(t−u) dW ⋆
u . (2.5)

Proposition 2.4. The bond price in the Vasicek model is given by

B(t, T ) = exp(m(t, T )− n(t, T )rt)

n(t, T ) =
1

b

(
1− e−b(T−t)

)

and m(t, T ) is also known explicitly.
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The volatility of the bond satisfies

b(t, T ) = −σn(t, T ) = −σ
b

(
1− e−b(T−t)

)
and

dB(t, T ) = B(t, T ) (rt dt− σn(t, T ) dW ⋆
t ) .

Theorem 2.5 (Stochastic Fubini’s theorem). In the computation above, we obtain
the following double integral∫ T

0

∫ t

0

e−b(t−u) dW ⋆
u dt =

1

b

∫ T

0

(
1− e−b(T−u)

)
dW ⋆

u .

To obtain this result, we must use the stochastic Fubini theorem∫ T

0

∫ t

0

f(t, u) dW ⋆
u dt =

∫ T

0

∫ T

u

f(t, u) dt dW ⋆
u

where f is a continuous function.

2.1. PDE Approach to Vasicek’s model. We can either use some known
results or provide some simple arguments.

We start by postulating that B(t, T ) = v(rt, t, T ) where v ∈ C2,1(R×[0, T⋆],R).
On the other hand, we may apply the Itô formula and obtain

dv(rt, t, T ) =

(
∂r

∂t
+ µ(rt, t)

∂v

∂r
+

1

2
σ2(rt, t)

∂2v

∂r2

)
dt+ σ(rt, t)

∂v

∂r
dW ⋆

t .

On the other hand, from Proposition 1.5 we have

dB(t, T ) = dv(rt, t, T ) = rtv(rt, t, T ) dt+ b(t, T )v(rt, t, T ) dW
⋆
t .

This means that(
∂r

∂t
+ µ

∂v

∂r
+

1

2
σ2 ∂

2v

∂r2
− rtv

)
dt︸ ︷︷ ︸

At

=

(
b(t, T )v − σ

∂v

∂r

)
dW ⋆

t︸ ︷︷ ︸
Mt

.

Lemma 2.6. If (Mt)t∈[0,T⋆] is a continuous local martingale and a process of finite
variation then Mt =M0 for t ∈ [0, T ⋆].

Since rt is a Gaussian process, we note that the unknown function should
necessarily satisfy the following pricing PDE for v = v(rt, t, T ),∂r

∂t + µ∂v
∂r + 1

2σ
2 ∂2v
∂r2 − rtv = 0

v(rt, T, T ) = h(rt).

For the bond maturing at T , we set h(r) = 1.
To solve this PDE in the Vasicek case, we postulate that

v(rt, t, T ) = em(t,T )−n(t,T )rt
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and derive a system of two ODEs satisfied by the function m and n.

3. Valuation of Bond Options

Consider a European call option on a U -maturity zero-coupon bond with expiry
T and strike K where t ≤ T < U and K > 0. The payoff at time T equals

CT = (B(T,U)−K)
+
= (B(T,U)−KB(T, T ))

+

We postulate that

Ct = BtEP⋆

(
B−1

T CT | Ft

)
= EP⋆

(
e−

∫ T
t

ru du (v (rT , T, U)−K)
+
)

The idea is to change the martingale measure P⋆ to another probability measure
Q such that

Ct = B(t, T )EQ (CT | Ft)

= B(t, T )EQ

(
(Ftξ −K)

+ | Ft

)
where Ft =

B(t,U)
B(t,T ) . The measure Q is equivalent to P on (Ω,FT ) and it is chosen

in such a way such that (Ft)t∈[0,T ] is a Q-martingale.
Alternatively, consider a claim X = CT maturing at time T . Then

Ct = BtEP⋆

(
CT

BT
| Ft

)
Φt(X) = BtEP⋆

(
X

BT
| Ft

)
Example 2.7. In the context of equity options this approach yields the following
representation of the price of a call option:

Ct = StP̂ (ST > K | Ft)−KB(t, T )P⋆ (ST > K | Ft)

where
Bt

St
is a P̂ -martingale

St

Bt
is a P ⋆-martingale

If Bt = ert (deterministic) then P̂ = P ⋆.

4. The CIR Model

We postulate that

drt = (a− brt) dt+ σ
√
rt dW

⋆
t ,
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where a, bσ are positive constants. Using Yamada-Watanabe theorem, we obtain
uniqueness and existence of solutions. A suitable comparison theorem tells us that
if r0 > 0 then rt ≥ 0 for t ∈ [0, T ]. It is known that the solution r to the CIR
equation is related to the Bessel process. It is known that

(i) B(t, T ) = em(t,T )−n(t,T )rt where m and n can be computed explicitly using
the PDE approach.

(ii) The price of a call option can be computed explicitly using the probabilistic
approach.

One can prove that

Ct = B(t, U)Φ1(B(t, U), B(t, T ), t, T, U)−KB(t, T )Φ2(B(t, U), B(t, T ), t, T, U)

where Φ1,Φ2 are given explicitly in terms of the distribution of a Bessel process.

5. Calibration

We denote by B̂(0, T ) the market price of a zero coupon bond with maturity
T . We assume that

B̂(0, T ) = e−
∫ T
0

f̂(0,u) du

where the instantaneous forward rate is a differentiable function such that

f̂T (0, t)

exists for t ∈ 0, T . In general, we can fit to market data a model of the form

drt = (a(t)− brt) dt+ σrβt W
⋆
t

for β ∈ [0, 1].

Proposition 2.8. Let β = 0. Then the model fits the market data if and only if
a(t) = f̂T (0, t) + h′(t) + b(f̂(0, t) + h(t)) where

h(t) =
σ2
(
1− e−bt

)2
2b2

.

It is essential here to assume that the function f̂(0, T ) is differentiable with
respect to T . If we wish to produce a model such that f(0, T ) = f̂(0, T ).



CHAPTER 3

The HJM Approach to Modelling Bond Prices

1. Introduction

Take as inputs the following objects

(i) (Ω,F,P), W , a d-dimensional Brownian motion.
(ii) The dynamics of a family of processes

{f(t, T ), t ∈ [0, T ]}, T ∈ [0, T ⋆]

where f(·, T ) is an F-adapted process such that

df(t, T ) = α(t, T ) dt+ σ(t, T ) · dWt

with some initial condition f(0, ·) : [0, T ⋆] → R.

As an output, we obtain the family of bond prices

{B(t, T ), t ∈ [0, T ]}, T ∈ [0, T ⋆]

given by

B(t, T ) = exp
(
−
∫ T

t

f(t, u) du

)
We must first derive the dynamics of B(·, T ) under P for any maturity T in the
following form

dB(t, T ) = B(t, T ) (a(t, T ) dt+ b(t, T )dW ⋆
t )

where a and b are given in terms of α and β.
Next, we will find out under which assumptions on α and β the HJM model

admits a spot martingale measure P⋆ or equivalently, a forward martingale measure
PT⋆ .

By definition, P⋆ is any probability measure on (Ω,FT⋆) such that P⋆ ∼ P and
the processes

Zt =
B(t, T )

Bt
=

B(t, T )

exp
(∫ t

0
f(u, u) du

)
are P⋆-(local) martingales. Similarly, PT⋆ ∼ P and the processes

F (t, T, T ⋆) =
B(t, T )

B(t, T ⋆)

15
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are PT⋆-(local) martingales.

Note. Let F (t, T, U) = B(t,T )
B(t,U) .

(i) If U ≤ T , then F (t, T, U) is the forward price of a T -maturity bond for the
settlement date at time U .

(ii) If U ≥ T then F (t, T, U) represents the forward rate in the FRA initiated at
time t for the future time interval [T,U ].

Definition 3.1 (HJM approach). Assume that

df(t, T ) = α(t, T ) dt+ σ(t, T ) · dWt

with W a d-dimensional Brownian motion and

σ(t, T ) · dWt =
d∑

i=1

σi(t, T )dW i
t .

All processes are specified under P.
We define B(t, T ) = e−

∫ T
t

f(t,u) du.

Lemma 3.2. Let α⋆(t, T ) =
∫ T

t
α(t, u) du, and σ⋆(t, T ) =

∫ T

t
σ(t, u) du. These are

F-adapted processes.
Then we claim that

dB(t, T ) = B(t, T ) (a(t, T ) dt+ b(t, T ) · dWt)

where

a(t, T ) = f(t, t)− α⋆(t, T ) +
1

2
(σ ⋆ (t, T ))

2

b(t, T ) = −σ⋆(t, T ).

Let Z(t, T ) = B(t,T )
Bt

, with Bt = e
∫ t
0
f(u,u) du, so that

dZ(t, T ) = Z(t, T )

((
1

2
(σ(t, T ))

2 − α⋆(t, T )

)
dt− σ⋆(t, T ) · dWt

)
Under which assumptions on α and σ does there exists a probability measure

Q ∼ P on (Ω,FT⋆) such that Z(t, T ), t ∈ [0, T ] is a Q-martingale for every T ∈
[0, T ⋆].

We can also form process

FB(t, T, T
⋆) = F (t, T, T ⋆) =

B(t, T )

B(t, T ⋆)
.

2. Trading Strategies

We first choose τ = {T1 < T2 < · · · < Tk ≤ T ⋆} and take some F-adapted
process φ = (φ1, . . . , φk). τ represents the maturities of traded bonds. φi represents
the number of shares of τi-maturity bonds.
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Then the wealth process of (φ, τ) equals

Vt(φ) =
k∑

i=1

φi
tB(t, Ti).

Definition 3.3 (Self-financing). We say that φ is self financing if

dVt(φ) =

k∑
i=1

φi
t dB(t, Ti).

Lemma 3.4.

(i) Let V ⋆
t (φ) =

Vt(φ)
Bt

. Then φ is self-financing if and only if

dV ⋆
t (φ) =

k∑
i=1

φi
tdZ(t, Ti).

(ii) Let Fv(t, T ) =
Vt(φ)
B(t,T ) for some 0 < T ≤ T ⋆. Then φ is self-financing if and

only if

dFv(t, T ) =

k∑
i=1

φi
td

(
B(t, Ti)

B(t, T )

)
=

k∑
i=1

φi
tdF (t, Ti, T )

where we assume T ≥ Tk.

3. Martingale Measures

We will first address the issue of existence of the so-called forward martin-
gale measure, that is, a martingale measure for processes Vt(φ)

B(t,T⋆) or equivalently, a
martingale measure for processes

FB(t, T, T
⋆) =

B(t, T )

B(t, T ⋆)
, t ∈ [0, T ], T ∈ [0, T ⋆].

Lemma 3.5. For any T ∈ [0, T ⋆],

dFB(t, T, T
⋆) = FB(t, T, T

⋆) (ã(t, T ) dt+ (b(t, T )− b(t, T ⋆)) dWt)

where
ã(t, T ) = a(t, T )− a(t, T ⋆)− b(t, T ⋆) (b(t, T )− b(t, T ⋆))

We denote by P̂ = P⋆ the martingale equivalent to P on (Ω,FT⋆) by

dP̂

dP
= Et

(∫ ·

0

hu dW
⋆
u

)
If h is such that

E
(
ET⋆

(∫ ·

0

hu dWu

))
= 1
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the P̂ is well defined and we can compute the dynamics of FB(t, T, T
⋆) under P̂

with respect to Ŵ , where

Ŵ =Wt −
∫ t

0

hu du, t ∈ [0, T ⋆]

Assume that

a(t, T )− a(t, T ⋆) = (b(t, T ⋆)− ht) · (b(t, T )− b(t, T ⋆)) (3.1)

Condition (3.1) in the lecture notes ensures that there is no drift term in the
dynamics of FB(t, T, T

⋆) under P̂ for all maturities T . After some computations,
(3.1) can be represented as follows

α(t, T ) + σ(t, T )

(
ht +

∫ T⋆

T

σ(t, u) du

)
= 0.

Later on we will denote by PT the forward measure for the date T . Thus
P̂ = PT⋆ .

3.1. Spot Martingale Measure. We know that

dZ(t, T ) = −Z(t, T )
((

α⋆(t, T )− 1

2
|σ⋆(t, T )|2

)
dt+ σ⋆(t, T ) dWt

)
Now, the conditions for the drift term in dZ(t, T ) disappearing reads

α⋆(t, T ) =
1

2
|σ⋆(t, T )|2 − σ⋆(t, T )λt

⇕

α(t, T ) = σ(t, T ) (σ⋆(t, T )− λt)

The last formula can be seen as a tool for simple derivations of processes of
interest interest under the measure P⋆ (setting λ = 0). We denote

W ⋆
t −Wt −

∫ t

0

λu du

3.2. Forward Measure. We are going to examine the relationship between
P⋆ and PT in a general term structure model.

Note. Define the following.

dB(t, T ) = B(t, T ) (rt dt+ b(t, T ) dW ⋆
t )

dζit = ζit
(
rt dt+ σi

t dW
⋆
t

)
By definition,

πt(X) = BtEP⋆

(
X

BT
| Ft

)
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Can we fine Q such that Q ∼ P⋆ and

BtEP⋆

(
X

BT
| Ft

)
= B(t, T )EQ (X | Ft)

for any claim X ∈ FT where B(t, T ) = BtEP⋆

(
1

BT
| Ft

)
. Formally,

EQ (X | Ft) =
EP⋆

(
X
BT

| Ft

)
EP⋆

(
1

BT
| Ft

)
We are guessing that Q ∼ P⋆ with density on (Ω,Ft)

dQ
dP

=
1

B(0, T )BT
,P⋆ − a.s.

EP⋆

(
1

BT

)
= B(0, T ).

Definition 3.6. Suppose that P⋆ is a spot martingale measure for our model. Then
for any maturity T ∈ [0, T ⋆], we define the forward martingale measure for the date
T by setting on (Ω,FT⋆)

dPT

dP⋆
=

1

B(0, T )BT
,P⋆ − a.s.

Proposition 3.7.
(i)

dPT

dP⋆
| Ft = EP⋆

(
dPT

dP⋆
| Ft

)
= EP⋆

(
B0B(T, T )

B(0, T )BT
| Ft

)
=

B0

B(0, T )
EP⋆

(
B(T, T )

BT
| Ft

)
=

B0

B(0, T )

B(t, T )

Bt
,P⋆ − a.s.

Recall that πt(X)
Bt

is a P⋆-martingale. Similarly, πt(X)
B(t,T ) is a PT -martingale. If

ηt =
dPT

dP⋆ | Ft then M is a PT -martingale if and only if Mη is a P⋆-martingale.

Exercise 3.8. If we know that under P processes Xt

Zt
are martingales where Z is a

fixed, positive process and under Q process Xt

Yt
are martingales for a fixed positive

process Y then we can find a density of Q with respect to P in terms of Z and Y .

We consider an arbitrage free model of bond prices and stock prices in which
the spot martingale measure P⋆ exists, such that B(t,T )

Bt
and Si

t

Bt
are P⋆-martingales.

We do not postulate that our model is complete.
Assume that X is an attainable claim in this model. We know that the arbitrage

price πt(X) is unique and it can be computed using the risk-neutral valuation
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formula
πt(X) = BtEP⋆

(
X

BT
| Ft

)
.

Remark. How do we find the forward price of X at the time t in the forward
contract with settlement date T .

Definition 3.9 (Forward contract). The forward contract written at time t on a
time T contingent claim is represented by the time T contingent claim

GT = X − FX(t, T )

such that
(i) FX(t, T ) is an Ft-measurable random variable,
(ii) the arbitrage price at time t on a contingent clam GT equals zero, that is,

πt(GT ) = 0.

To compute FX(t, T ), we will use the risk-neutral formula

πt(GT ) = BtEP⋆

(
GT

BT
| Ft

)
= BtEP⋆

(
X

BT
| Ft

)
− FX(t, T )BtEP⋆

(
1

BT
| Ft

)
= πt(X)− FX(t, T )B(t, T )

= 0

and so
FX(t, T ) =

πt(X)

B(t, T )
.

Define

FZ(t, T ) =
Zt

B(t, T )
Zt = St or B(t, T )

FS(t, T ) =
St

B(t, T )
forward price of stock S

FB(t, U, T ) =
B(t, U)

B(t, T )
forward price of U -maturity bond.

Definition 3.10 (Forward measure). We assume that P⋆ is given. The correspond-
ing forward measure for the date T, T ∈ [0, T ⋆] is defined by

dPT

dP⋆
=

1

B(0, T )BT
, P⋆ − a.s.

so that
dPT

dP⋆
|Ft =

B0

B(0, T )

B(t, T )

Bt

for every t ∈ [0, T ].
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Lemma 3.11. Assume that W ⋆
t is a Brownian motion under P⋆ and

dB(t, T ) = B(t, T ) (rt dt+ b(t, T ) dW ⋆
t )

Then ηt ≡ dPT

dP⋆ |Ft equals

ηt = exp
(∫ t

0

b ∗ u, T ) dW ⋆
u − 1

2

∫ t

0

|b(u, T )|2 du
)
.

That is,
ηt = Et

(∫ ·

0

b(u, T ) dW ⋆
u

)
. (⋆)

It then follows that

dηt = ηtb(t, T ) dW
⋆
t , η0 = 1.

and
WT

t =W ⋆
t −

∫ t

0

b(u, T ) du

is a Brownian motion under PT .

Proof. Equation (⋆) follows from
dPT

dP⋆
|Ft =

B0

B(0, T )

B(t, T )

Bt

The corollaries follow from differentiation and Girsanov’s theorem, respectively.
�

Exercise 3.12. Let T ≤ U . Find the dynamics of the forward price FB(t, U, T )

under PT . Apply the Itô formula under P⋆, use Girsanov’s theorem to express the
dynamics of FB(t, U, T ) in terms of b(t, T ), b(t, U) and WT . Compute the volatility
γ(t, U, T ) of FB(t, U, T ). Apply the above the the HJM model (α(t, T ), σ(t, T ),W ).

3.3. Applications of forward measures.
(i) Valuation of contingent claims.
(ii) Construction of models for market rates.

Application (i) is based on the following equality

BtEP⋆

(
X

BT
| Ft

)
= B(t, T )EPT

(X | Ft) .

Lemma 3.13. If X is an attainable claim and settles at time T , then

πt(X) = B(t, T )EPT
(X | Ft)

3.3.1. Valuation of claims with maturity U ̸= T . Assume that U ≤ T . Then
the payoff X at U is equivalent to the payoff Y = X

B(U,T ) at time T . Equivalence is
understood in the sense that

X at U ∼ Y at T ⇐⇒ πt(X) = πt(Y ), t ∈ [0, U ].
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So
πt(X) = B(t, U)EPU

(X | Ft) = πt(Y ) = B(t, T )EPT

(
X

B(U, T )
| Ft

)
.

To establish this equality, observe that for t ∈ [0, U ],

dPU

dPT
|Ft =

dPU

dP⋆ |Ft

dPT

dP⋆ |Ft

=

B0

B(0,U)
B(t,U)

Bt

B0

B(0,T )
B(t,T )

Bt

=
B(0, T )

B(0, U)

B(t, U)

B(t, T )
.

We then need only apply the Bayes formula and apply the previous result.
Assume now that U ≥ T . We postulate that X is FT -measurable. Then the

claim Y = B(T,U)X is equivalent to X, in the sense that πt(X) = πt(Y ).
(i) U ≤ T . Then πt(X) = B(t, T ) = EPT

(
X

B(U,T ) | Ft

)
.

(ii) U ≥ T and X ∈ FT . Then πt(X) = B(t, T )EPT (B(T,U)X | Ft).

4. The Gaussian HJM Model

Under P⋆,
dB(t, T ) = B(t, T ) (rt dt− σ⋆(t, T ) dW ⋆

t ) (3.2)

where
− σ⋆(t, T ) =

∫ T

t

σ(t, u) du = b(t, T ). (3.3)

Moreover,
df(t, T ) = σ(t, T )σ⋆(t, T ) dt+ σ(t, T ) dW ⋆

t (3.4)

and
rt = f(0, t) +

∫ t

0

σ(u, t)σ⋆(u, t) du+

∫ t

0

σ(u, t) dW ⋆
u (3.5)

Remark. From (3.2) and (3.4), we see that for any fixed T , processes B(t, T ) and
f(t, T ) are continuous semimartingales. In (3.5), we integrate a different process
for each t. Also, as an additional input we take some function f(0, t).

Can we then compute drt? The answer to this question is positive in some
special cases.

We now always postulate that σ(t, T ) is deterministic. Then we say that we deal
with the Gaussian HJM model since rt has a normal distribution for any t ∈ [0, T ⋆].

Several examples of the Gaussian HJM model include:
(i) The Ho-Lee model. We take d = 1 and σ(t, T ) = σ. Since b(t, T ) = −σ(T −t),

it can also be seen as a counterpart to Merton’s model.
(ii) The bond price satisfies under P⋆,

dB(t, T ) = B(t, T ) (rt dt− σ(T − t) dW ⋆
t ) .

The short term rate equals

rt = f(0, t) +
1

2
σ2t2 + σW ⋆

t ,
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so that
drt =

(
fT (0, t) + σ2t

)︸ ︷︷ ︸
a(t)

dt+ σdW ⋆
t .

where the function a : [0, T ⋆] → R can also be derived if we start from the
extended merton model drt = a(t) dt+σdW ⋆

t and we fit this model to the yield
curve EP⋆

(
e−

∫ T
0

rt dt
)
= e−

∫ T
0

f(0,t) dt. We also need to show that r0 = f(0, 0).
To solve this problem, we need to assume that fT (0, t) exists.

(iii) Vasicek’s model. Take d = 1 and σ(t, T ) = σe−b(T−t) where σ, b are positive
numbers. Then

b(t, T ) = −σ⋆(t, T ) = −σ
b

(
e−b(T−t) − 1

)
,

and other computations are given in the course notes.



CHAPTER 4

Valuation of Options in Gaussian Models

1. Options on Bonds

Consider any term structure in which at least some bonds are traded. If the
short term rate process is given then under P⋆,

dB(t, Ti) = B(t, Ti) (rt dt+ b(t, Ti) dW
⋆
t )

where b(t, Ti) is a deterministic function and 0 < T1 < · · · < Tm. If r is not
explicitly specified then we should focus on the dynamics of the forward prices, for
example

FB(t, Ti, Tj) =
B(t, Ti)

B(t, Tj)
, i = 1, . . . ,m

under the forward measure PTj .
How do we value and hedge European bond options with maturity T and the

underlying zero coupon bond maturing at U > T . The payoff at T equals

CT = (B(T,U)−K)
+

PT = (K −B(T,U))
+

so that
CT − PT = B(T,U)−K

and thus for t ∈ [0, T ],

Ct − Pt = B(t, U)−KB(t, T ).

Instead of computing the expectation under P⋆,

Ct = BtEP⋆

(
CT

BT
| Ft

)
,

we will compute the equivalent probability measure PT

Ct = B(t, T )EPT (CT | Ft) .

Let D = {B(T,U) > K ∈ FT }. Then

CT = B(T,U)1D −K1D = X1 −X2

24
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So that
Ct = πt(X1)− πt(X2) = I1 − I2.

For I2, we compute

I2 = πt(K1D) = KB(t, T )PT (D | FT ) .

We observe that
B(T,U) =

B(T,U)

B(T, T )
= FB(T,U, T )

where under PT the forward price FB(t, U, T ), [t ∈ [0, T ]] satisfies

dFB(t, U, T ) = FB(t, U, T ) (b(t, U)− b(t, T )) dWT
t

so that Ft = FB(t, U, T ) satisfies

FT = Ft exp
(
ζ(t, T )− 1

2
v2(t, T )

)
where

ζ(t, T ) =

∫ T

0

γ(u,U, T ) dWT
u , v2(t, T ) =

∫ T

t

|γ(u,U, T )|2 du

where γ(u,U, T ) = b(u, U)− b(u, T ).
We need to compute

PT (D | Ft) = PT (B(T,U) > K | Ft)

= PT (FB(T,U, T ) > K | Ft)

= PT

(
Fte

ζ(t,T )− 1
2 v

2(t,T ) | Ft

)
,

where ζ(t, T ) is independent of Ft and ζ(t, T ) ∼ N(0, v2(t, T )). Hence

PT (D | Ft) = PT

(
Feζ(t,T )− 1

2v
2(t,T ) |F = Ft

)
= PT

(
ζ(t, T )

v(t, T )
> ln K

F
+

1

2
v2(t, T ) |F = Ft

)
= N(d̃−(Ft, t, T ))

where d̃2(Ft, t, T ) =
ln F

K ± 1
2v

2(t,T )

v(t,T ) .
For I1, we need to compute the conditional expectation

I1 = B(t, T )EPT (B(T,U)1D | Ft)

where
B(T,U)

C
=
FB(T,U, T )

C
=
dP̃T

dPT
.
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so that
dP̃T

dPT
| Ft =

FB(t, U, T )

C

= exp
(∫ t

0

γ(u,U, T ) dWT
u − 1

2

∫ t

0

|γ(u,U, T )|2 du
)

= η̃t

for t ∈ [0, T ]. Note also that

EP̃T
(X | Ft) =

EPT
(Xη̃t | Ft)

η̃t

FB(t, U, T )

c
EP̃T

(1D | Ft) = EPT

(
1D

B(T,U)

C
| Ft

)
and

EPT
(B(T,U)1D | Ft) =

B(t, U)

B(t, T )
P̃T (D | Ft)

and thus
I1 = B(t, U)P̃T (D | Ft)

and since dFt = Ftγ(t, U, T )dW
T
t and

W̃T
t −

∫ t

0

γ(u,U, T ) du

is a P̃T -Brownian motion, we obtain

dFt = Ft

(
|γ(t, U, T )|2 dt+ γ(t, U, T ) dW̃T

t

)
under P̃T . Solving this equation, we obtain

FT = Ft exp
(∫ T

t

γ(u,U, T ) dW̃T
t +

1

2

∫ T

0

|γ(t, U, T )|2 du

)
.

and so
P̃T (D | Ft) = N(d̃+(Ft, t, T )).

We conclude that

I1 = B(t, U)N(d̃+(Ft, t, T )),

I2 = KB(t, T )N(d−(Ft, t, T )).

so that the price of the call bond option is now known explicitly. It remains to find
out whether the call option can be replicated, for instance, by a trading strategy
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φ = (φ1, φ2) with the wealth process V (φ),

Vt(φ) = φ1
tB(t, U) + φ2

tB(t, T )

dVt(φ) = φ1
tdB(t, U) + φ2

tdB(t, T )

VT (φ) = CT = (B(T,U)−K)+.

Equivalently,
Vt(φ)

B(t, T )
= φ1

tFB(t, U, T ) + φ2
t

d

(
Vt(φ)

B(t, T )

)
= φ1

tdFB(t, U, T )

VT (φ)

B(T, T )
= (FB(T,U, T )−K)+.

Let FV (t, T ) =
Vt(φ)
B(t,T ) . Then we need to solve the following problem

dFV (t, T ) = φ1
tdFB(t, U, T )

FV (T, T ) = (FB(T,U, T )−K)+

where
dFB(t, U, T ) = FB(t, U, T )γ(t, U, T )dW

T
t .

To solve this equation, observe that
Ct

B(t, T )
=
B(t, U)

B(t, T )

(
N(d̃+(Ft, t, T ))−KN(d̃−(Ft, t, T ))

)
,

and
FC(t, T ) = Ft

(
N(d̃+(Ft, t, T ))−KN(d̃−(Ft, t, T ))

)
.

Lemma 4.1. Let (Yt) be given by

Yt = Xt

(
N(d̃+(Xt, t, T ))−KN(d̃−(Xt, t, T ))

)
dXt = Xtσ(t) dWt

d̃±(x, t, T ) =
ln x

K ±2 (t, T )

v(t, T )
.

Then
dYt = N(d−(Xt, t, T )) dXt.

Proof. Apply the Itô formula. Assume here that σ is deterministic. �

If we apply the lemma to Fc(t, T ), we obtain

dFc(t, T ) = N(d̃+(Ft, t, T )) dFt

= φ1
t dFt.
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so that
φ1
t = N(d̃1(Ft, t, T ))

and
φ2
t =

Ct − φ1
tB(t, U)

B(t, T )

Then

Vt(φ) = Ct = φ1
tB(t, U) + φ2

tB(t, T ).

dVt(φ) = dCt = φ1
tdB(t, U) + φ2 − tdB(t, T ).

In the future, we will deal with more general options of the form

CT = (Z1
T −KZ2

T )
+

where Zi is some portfolio of bonds. Then the choice of a natural hedging strategy
depends on the choice of traded assets.

Lemma 4.2. The price Ct of a call option equals

Ct = B(t, U)PU (D | Ft)−KB(t, T )PT (D | Ft)

Proof.

CT = B(T,U)1D −K1D = X1 −X2

πt(X2) = B(t, T )EPT
K1D | Ft = KB(t, T )PT (D | Ft)

and X1 = B(T,U)1D is equivalent to Y1 = 1D at time U , so that

πt(X1) = πt(Y1) = B(t, U)PU (D | Ft)

for t ∈ [0, T ]. �

2. Options on Coupon Bonds

Let T1 < T2 < · · · < Tn ≤ T ⋆ be coupon dates and c1 . . . , c2 he corresponding
deterministic coupons. Then the price Zt = Bc(t, T ) of the coupon bond equals

Zt =

n∑
j=1

cjB(t, Tj).

We consider the call option with maturity T < T1 and the payoff

CT = (ZT −K)+ =
m∑
j=1

cjB(t, Tj)1D −K1D

where
D = {ZT > K}.
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One possible way of pricing this is to represent Ct as follows:

Ct =
n∑

j=1

cjB(t, Tj)PTj (D | Ft)−KB(t, T )PT (D | Ft).

Remark (On the proof of Proposition 4.3). We know that if we set D = {ZT > K},
then

Ct =
m∑
j=1

cjB(t, Tj)PTj
(D | Ft)−KB(t, T )PT (D | Ft).

For simplicity, we may set t = 0 - then we need to compute PTj (D) and PT (D).
Recall that T = T0 < T1 · · · < Tm. Then

D =


m∑
j=1

cj FB(T, T, Tj)︸ ︷︷ ︸
F j

B(T )

> K


where dF j

B(t) = F j
B(t)(b(t, Tj)− b(t, T ))dWT

t , and hence

PT (D) = PT

 m∑
j=1

cjF
j
B(0)e

∫ T
0

γ(t,Tj ,T ) dWT
t − 1

2

∫ T
0

|γ(t,Tj ,T )|2 dt > K


If we denote ζj =

∫ T

0
γ(t, Tj , T ) dW

T
t , then the vector ζ = (ζ1, . . . , ζm) has a normal

distribution under PT , with mean (0, 0, . . . , 0) and covariance (νkl) where

νkl =

∫ T

0

γ(t, Tk, T ) · γ(t, Tl, T ) dt.

To compute PTj (D), we need to know the distribution of ζ under PTj . Since
W

Tj

t =WT
t −

∫ t

0
γ(u, Tj , T ) du it is clear that under PTj , the forward price F l

B(t) =

FB(t, Tl, T )

dF l
B(t) = F l

B(t)γ(t, Tl, T ) dW
T
t + FB(t)γ(t, Tl, T )γ(t, Tj , T ) dt

so that the joint distribution of ζ1, . . . , ζm under each forward measure PTj can also
be computed. The joint distribution is Gaussian with the same covariance matrix
but with means vlj

3. Pricing of General Contingent Claims

Let ζi(t, T ) =
∫ T

t
γi(u, T ) dW

T
u . Then under PT the random variables ζi(t, T ), . . . , ζn(t, T )

are normally distributed with mean (0, . . . , 0) and covariance matrix (γij) given by

γij =

∫ T

t

γi(u, T )γj(u, T ) du.
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Proposition 4.3. Let X = g(Z1
T , . . . , Z

n
T ) at time T . Then the price of X at time

t ∈ [0, T ) is given by

πt(X) = B(t, T )

∫
Rk

g

(
Z1
t

B(t, T )

nk(x+ θ1)

nk(x)
, . . . ,

Zn
t

B(t, T )

nk(x+ θn)

nk(x)

)
nk(x) dx

where nk is the standard n-dimensional Gaussian density on Rk and (θi) are ele-
ments of Rk such that

θiθj = γij

for all i, j. This follows from the Cholesky decomposition of the covariance matrix
(γij)

Proof.

πt(X) = B(t, T )EPT
(g(FZ1(T, T )), . . . , FZn(T, T ) | Ft)

FZi(T, T ) = FZi(t, T )eζi(t,T )− 1
2γii

πt(X) = B(t, T )EQ

(
g
(
FZi

t
eθiη−

1
2γii

)
| Ft

)

= B(t, T )

∫
Rk

g

 Zi
t

B(t, T )
e

θi·x− 1
2 γii︸︷︷︸

|θi|2

nk(x) dx.

Since nk(x+θi)
nk(x)

= eθi·x−
1
2 |θi|

2 , we obtain our result. �



CHAPTER 5

Modelling of Forward LIBORs

1. Introduction to LIBOR

Let δ equal 3 months. If L(0) = 10% then if we borrow N at time 0, we will
pay back after three months the amount N(1 + δL(0)) where the unit is one year
so that δ = 1

4 .

(i) Spot LIBOR is (or was) the most commonly used rate for interbank funding
and as an underlying for interest rate derivatives such as caps and floors.

(ii) By convention, the pricing formula for caplets and floorlets was a version of
the Black formula which reads

CT = FtN(d+)−KN(d−)

where Ft is the forward price of the underlying asset.

Let us consider a caplet with maturity T and settlement date T + δ. Here,
a caplet is a call option on LIBOR, in the sense that it pays the amount CP =

(L(T ) − K)+δN at time T + δ where T is the maturity date, N is the nominal
value, and x the strike level.

Definition 5.1 (Cap). A cap is a portfolio of caplets over non-overlapping periods

0 < T0 < T1 < · · · < Tn

so we have n caplets, struck at Ti for the period [Ti, Ti+1] and paying (L(Ti) −
K)+Nδi+1 at Ti+1, where δi+1 = Ti+1 − Ti.

By convention, the price of a caplet over [T, T + δ] equals

Cplt = B(t, T + δ) (L(t)N(d+)−KN(d−))

where

d± =
ln L(t)

K ± 1
2σ

2(T − t)

σ
√
T − t

.
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2. Caps and Floors in the LIBOR Market Model

A caplet (floorlet) is a protection against the rise (fall) in the LIBOR rate. The
caplet (floorlet) pays off:

CpljTj
N (L(Tj−1)− κ)

+
δj

FrljTj
N (κ− L(Tj−1))

+
δj

paid at time Tj .
We clearly have the cap-floor put call parity,

CpljTj
− FrljTj

= Np (L(Tj−1)− κ) δj .

Exercise 5.2. Using this relationship, find the difference CPljt − Frljt for any
t ∈ [0, Tj−1].

Recall that
1 + δjL(Tj−1) =

1

B(Tj−1, Tj)

Hence

CpljTj
= N

 1

B(Tj−1, Tj)
− (1 + δjκ)︸ ︷︷ ︸

δ̃j


+

δj

An equivalent payoff at time Tj−1 equals

C̃pljTj−1
= B(Tj−1, Tj)CpljTj

= δ̃jN

(
1

δ̃j
−B(Tj−1, Tj)

)+

.

Definition 5.3. The forward swap rate κ(t, T0, T1, . . . , Tn) = κ(t, T, n) where T0 =

T is the Ft-measurable random variable such that FSt (κ(t, T, n)) = 0.

Lemma 5.4. The forward swap rate equals

κ(t, T, n) =
B(t, T0)−B(t, Tn)∑n

j=1 δjB(t, Tj)



CHAPTER 6

Modelling of Forward Swap Rates

(i) Definition and payoffs of an n-period forward swap.
(ii) Valuation formula for a forward swap (6.4)
(iii) Definition and formula for forward swap rates (6.5)
(iv) Definition and equivalent representations for a swaption (Lemma 6.5)
(v) Postulates of Jamshidian’s model of co-terminal forward swap rates
(vi) Valuation of a swaption (Proposition 6.3)
(vii) Choice of a numeraire portfolio

Consider the family of co-terminal swap rates

κ(t, T0;n) =
B(t, T0)−B(t, Tn)∑n

k=1 δkB(t, Tk)

κ(t, T1, ;n− 1) =
B(t, T1)−B(t, Tn)∑n

k=2 δkB(t, Tk)

↓

κ(t, Tn−1; 1) =
B(t, Tn−1)−B(t, Tn)

δnB(t, Tn)
= L(t, Tn−1)

For ease of notation, we let κ(t, T;n− j) = κ̃(t, Tj).

1. Payer Swaptions

Let us take j = 0 so that the underlying forward swap has n periods. Let
FSt(κ) denote the value of the forward swap. We know that

FSt(κ) = B(t, T0)−
n∑

j=1

cjB(t, Tj)

where cj = κδj , j = 1, . . . , n− 1, cn = (1 + κδn).

Lemma 6.1. The price FSt(κ) can be represented as follows:

FSt(κ) = FSt(κ)− FSt(κ(t, T0;n))

=
n∑

j=1

(κ(t, T0;n)− κ) δjB(t, Tj)

= Gt(n)
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where
Gt(n) =

∑
δkB(t,Tk)

, Gt(n− j) =
n∑

k=j+1

δkB(t, Tk)

A payer swaption with a fixed rate κ, maturing date T = T0 and the underlying
n-period fixed-for-floating forward swap can be identified with the payoff (FST (κ))

+

at time T . A receiver swaption pays (−FST (κ))
+ at time T . Of course, we have a

put call parity relationship

PSt(κ)− RSt(κ) = FSt(κ)

The inequality FSt(κ) > 0 holds if and only if κ(T, T ;n) > κ where κ(T, T ;n)
is the spot swap rate at time T0. Hence if κ(T, T ;n) ≤ κ the swaption expires
worthless, but it is still possible to enter at T a forward swap with fixed rate
κ(T, T ;n) ≤ κ.

If we define
Yk = δk (κ(T, T ;n)− κ)

+
,

we know that

(FSt(κ))
+
=

n∑
k=1

δkB(T, Tk) (κ(T, T ;n)− κ)
+

=
n∑

k=1

B(T, Tk)Yk

which is equivalent to a sequence of payoffs Y1, . . . , Yn at times T1, . . . , Tn. Also for
j = 0, 1, . . . , n− 1, (

FS0
T0
(κ)
)+

= GT0(n) (κ(T0, T0;n)− κ)
+(

FSj
Tj
(κ)
)+

= GTj (n− j) (κ(Tj , Tj);n)− κ)
+

We now seek to construct a model for the joint dynamics of a co-terminal family
of forward swap rates

κ(t, Tj ;n− j) = κ̃(t, Tj), t ∈ [0, Tj ]

such that the volatility ν(t, Tj) is given in advance by a deterministic function and
the model is driven by a d-dimensional Brownian motion.1

We expect that each process κ̃(t, Tj) will be a martingale under some probability
measure P̃Tj+1 so that

dκ̃(t, Tj) = κ̃(t, Tj)ν(t, Tj) dW̃
Tj+1

t

1Any process that we can apply Girsanov’s theorem to will be sufficient.
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where W̃Tj+1

t is a Brownian motion under P̃Tj+1 and the Radon-Nikodym densities
for j = 0, . . . , n− 1 should be given by

dP̃Tj+1

dP̃Tn

= ?

which should be expressed in terms of W̃Tn , κ̃(t, Tk), ν(t, Tk) for k = n−j+1, . . . , n.

2. Valuation of Swaptions in Jamshidian’s Model

Let us assume that the model is well defined. We will value the j-th swaption
for j = 0, . . . , n−1. Suppose that it is attainable, so that the price can be computed
using the martingale method, meaning here that

πt(X) = Gt(n− j)EP̃Tj+1

(
X

GTj (n− j)
| Ft

)
where X is any attainable claim in Jamshidian’s model with maturity T . Observe
that only a finite family of forward swaps are traded in this model. In our case,
X = GTj (n− j) (κ̃(Tj , Tj)− κ)

+, and thus

PSi
t(κ) = Gt(n− j)EP̃Tj+1

(
(κ̃(Tj , Tj)− κ)

+ | Ft

)
.

Since η(t, Tj) : [0, Tj ] → Rd is deterministic, we can evaluated this expression using
the Black formula, and obtain

κ̃(t, Tj)Φ
(
d̃j+(κ̃(t, Tj), t, Tj)

)
− κΦ

(
d̃j−(κ̃(t, Tj), t, Tj)

)
where

d̃±(x, t, Tj) =
ln x

κ ± 1
2v

2
j (t, Tj)

vj(t, Tj)

vj(t, Tj) =

∫ Tj

t

|v(u, Tj)|2 du.

For replication of a swaption, we formally define the relative price

FSj ,G(t, Tj) =
PSj

t

Gt(n− j)
= κ̃(t, Tj)Φ

(
d̃j+(t)

)
− κΦ(d̃j−(t)).

In this case,
dFSj ,G(t, Tj) = Φ(d̃j+(t)) dκ̃(t, Tj).

It is possible to then hedge this option using forward swaps in discrete time.
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Let ψj be any trading strategy in the j-th forward swap. At time 0 the value
of our strategy is zero. Then the trading strategy:

t = 0 ψj
0 positions in market forward swap with rate κ̃(0, Tj)

t = t1 φj
t1 positions in market forward swap with rate κ̃(t1, Tj)

↓ t = tn = Tj

Then gains and losses can be conveniently expressed in units of Gt(n − j). For
instance, the value of our ψj

0 positions at time t1 equals

PLt1 = Gt1(n− j)ψj
0 (κ̃(t1, Tj)− κ̃(0, Tj))

P̃Lt1 = ψj
0 (κ̃(t1, Tj)− κ̃(0, Tj))︸ ︷︷ ︸

paid in installments at times Tj+1, . . . , Tn.

After n steps,

P̃LTj =
n−1∑
k=0

ψj
tk
(κ(tk+1, Tj)− κ̃(tk, Tj))

→ n→∞
tk=

k
nTj

∫ Tj

0

ψj
u dκ(u, Tj)

The premium PSj
0 is totlaly invested in the level porftolio G(n− j) so that the

totla value of the profit and loss at time Tj equals

PSj
0

G0(n− j)
+

∫ Tj

0

ψj
u dκ(u, Tj)

Taking derivatives, we can show that by setting ψj
t = Φ

(
d̃j+(t)

)
we obtain the

replicating strategy for the j-th swaption.
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